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Abstract—Density Functional Theory (DFT) is used extensively
in the computation of electronic properties of matter, with
applications in solid state physics, computational chemistry, and
materials science. Approximating the exchange-correlation (XC)
functional is the key to the Kohn-Sham DFT approach, the basis
of most DFT calculations. The choice of this density functional
approximation (DFA) depends crucially on the particular system
under study, which has resulted in the development of hundreds
of DFAs. Though the exact density functional is not known,
researchers have discovered analytical properties of this exact
functional. Furthermore, these exact conditions are used when
designing DFAs.

This paper presents XCVERIFIER, the first approach for
verifying whether a DFA implementation satisfies the DFT exact
conditions. XCVERIFIER was evaluated on five DFAs from the
popular LIBXC library and seven exact conditions used in recent
work by Pederson and Burke. XCVERIFIER was able to verify
or find violations for a majority of the DFA-condition pairs,
demonstrating the feasibility of using formal methods to verify
DFA implementations. However, it timed out on all conditions of
the recent SCAN functional, revealing directions for future work.

Index Terms—Density functional theory, Formal methods.

I. INTRODUCTION

Density functional theory (DFT) [1]–[3] is a widely used
approximation in the computation of electronic properties of
matter. DFT calculations have been used to predict diverse
properties from atomic binding energies and chemical reactiv-
ities to electronic conductivities and magnetic phenomena [4].
Consequently, DFT finds applications in a number of scientific
and engineering fields, including solid state physics, compu-
tational chemistry, and materials science, and has been imple-
mented in widely-used scientific software such as ABINIT [5],
cp2k [6], ERKALE [7], Psi4 [8], Octopus [9], Qbox [10], and
Quantum ESPRESSO [11].

Originating in the foundational work of Hohenberg and
Kohn in 1964 [12], DFT has provided a practical way to reduce
the complexity of conventional electronic structure methods by
identifying the electron density function n(r)—a real function
in three-dimensional space—as the fundamental quantity from
which all other properties of a physical system can be derived.
The Kohn-Sham (KS) [13] approach is currently the basis of

most DFT calculations, and states that only the exchange-
correlation (XC) energy portion of a functional needs to be
approximated. However, the exact expression for this XC en-
ergy functional Exc[n], which describes the complex electron-
electron interactions within systems, is not known and is
incredibly difficult to approximate [14].

Researchers have developed hundreds of approximations to
the XC energy functional, which have the form:

Ẽxc[n] =

∫
n(r) ϵ̃xc

(
n(r),∇n(r),∇2n(r), . . .

)
dr, (1)

where the term ϵ̃xc is the density functional approximation
(DFA). The choice of DFA in a particular application depends
crucially on the known or expected physical properties of the
system under study [15]–[17].

This proliferation of DFAs is reflected in the fact that
the popular LIBXC software library [18], which provides
numerical implementations of DFAs, currently includes over
500 functionals [19]. DFAs are of varying degrees of complex-
ity [20]: (i) local density approximations (LDAs) depend only
on the electron density n, (ii) generalized-gradient approxima-
tions (GGAs) [21] depend on the electron density n and its
gradient ∇n, and (iii) meta-GGAs have a further dependence
on the Laplacian ∇2n and the local kinetic energy density τ .

The DFA ϵ̃xc in Equation 1 is a mathematical function with
a known, albeit complicated, analytical form. For instance,
the following equation shows just the exchange (X) part
ϵ̃ PBE

x of the Perdew-Burke-Ernzerhof (PBE) functional [22],
a commonly used GGA functional [23]:

ϵ̃ PBE
x (ρ, σ) =

2.884ρ1/3
(
−28.944π4/3ρ8/3 − 0.174π2σ

)
π1/3 ·

(
77.184π4/3ρ8/3 + 0.257π2σ

)
However, the correlation part of PBE is significantly more
complex with over 300 operations in the LIBXC implemen-
tation. The SCAN meta-GGA functional [24] is even more
complex with over 1000 operations, including transcendental
functions such as exp and log.

Creating a new DFA is an art mastered by only a few
researchers as of today, and the functional forms used to
define the DFAs vary considerably. DFA designs fall into two



categories: empirical and non-empirical. Empirically-designed
DFAs (e.g., LYP [25]) are tailored for molecular chemistry
applications and perform well on molecular benchmarks [26],
[27]. Non-empirically designed DFAs are constructed to sat-
isfy some exact conditions, which are known analytical prop-
erties of the exact functional (Section II). For example, the
correlation energy EC non-positivity condition states that the
correlation energy cannot be positive, i.e., Ec[n] ≤ 0 [28]. Fur-
thermore, so-called norms are imposed on DFAs by requiring
that they reproduce correctly some known physical systems,
e.g., a hydrogen or a helium atom for which exact results are
available. The SCAN functional is built to satisfy as many as
17 constraints and norms [24].

Recently, Pederson and Burke (PB) [28] checked whether
the LIBXC implementations of various DFAs satisfy DFT
exact conditions. In particular, they checked seven exact
conditions by considering their corresponding local condition
(Section II). These local conditions were assessed for a given
DFA by performing a grid search over the inputs to the
DFA and checking whether each input-output pair satisfies
the local condition. Many of the conditions require gradient
calculations, which were numerically approximated. The PB
approach is the state of the art in the DFT community, and
was the first to perform a large scale study of the role of exact
conditions in density functional development. For instance,
they found that many empirical DFAs satisfy these exact
conditions in certain regions even though they were designed
without explicit adherence to these exact conditions.

This paper addresses the problem of automatically verifying
whether the implementation of a DFA satisfies the exact
conditions of the density functional. It is the first to apply
formal-methods techniques to density functional theory. The
aim is to provide formal guarantees related to the correctness
of existing DFA implementations; viz., to formally verify if
the DFA implementation satisfies the exact conditions, and to
determine the areas of the input domain where it does not. As
a step towards solving this problem, we designed and imple-
mented XCVERIFIER, a tool that verifies whether a LIBXC
functional, implemented in Maple [29], satisfies the given
local condition (and, hence, the corresponding exact condition)
using the dReal solver [30] (Section III). XCVERIFIER also
computes any required derivatives symbolically, avoiding any
potential issues arising from their numerical approximation.
We also implemented a domain-splitting technique to improve
the performance of XCVERIFIER (Algorithm 1).

We evaluated XCVERIFIER by verifying seven exact con-
ditions (from Pederson and Burke) for five popular DFAs:
PBE [22], SCAN [24], LYP [25], AM05 [31], and VWN
RPA [32], which cover the different types of DFAs (LDA,
GGA, and meta-GGA), as well as different design categories
(empirical and non-empirical). Some conditions do not apply
to certain DFAs, which left us with 29 DFA-condition pairs.
As shown in Section IV-B, XCVERIFIER was successfully
able to verify or find counterexamples for 13 pairs, and it
is able to partially verify an additional seven pairs (Table I).
These results demonstrate the feasibility of using formal-

methods techniques to verify DFA implementations. However,
XCVERIFIER times out for nine pairs: one property for the
PBE DFA, one property for AM05, and all of the properties
for SCAN. This motivates further research on formal methods
for DFT.

To further validate our approach, we compared the results
from the PB approach with XCVERIFIER (Section IV-C): both
approaches find similar regions where the conditions were
violated or satisfied (Table II).

The contributions of the paper are as follows:
• A tool, XCVERIFIER, for automatically verifying exact

conditions for density functional approximations (Sec-
tion III).

• An evaluation of XCVERIFIER using five DFAs and
seven exact conditions along with a comparison with the
state-of-the-art grid-search approach (Section IV).

Our preliminary results demonstrate the feasibility of using
formal methods to prove the correctness DFT implementa-
tions, and reveal avenues for future work (Section VI).

II. EXACT CONDITIONS IN DFT

This section lists the exact conditions of the density func-
tional Exc considered in this paper. Our description closely
follows that in Pederson and Burke [28]. Each exact condition
has a corresponding local condition such that if the DFA ϵ̃xc
satisfies the local condition, then the functional Ẽxc satisfies
the (global) exact condition. Note that the converse is not true:
violating the local condition does not imply that the exact
condition is violated. Furthermore, the region where the local
condition is violated for a DFA can depend on the particular
implementation of the functional. In this paper, we focus on
verifying the LIBXC implementation of a DFA.

The local conditions take the exchange (correlation) en-
hancement factor F̃xc, which is a function of ϵxc

(
n(r)

)
, the

local value of the exchange (correlation) energy for the DFA.
Here, n(r) is the electron density at the point r repre-
senting the position of an electron. For GGA functionals,
the inputs n(r) and ∇n(r) are usually expressed in terms
of the Wigner-Seitz radius rs = (4πn/3)−1/3 and s =
|∇n|/(2(3π2)1/3n4/3). Given the expressions for the DFA
exchange and correlation energies ϵ̃x and ϵ̃c in terms of s
and rs, we can compute F̃x and F̃c of F̃xc:

F̃xc[n(r)] = F̃x + F̃c =
ϵ̃xc[n(r)]

ϵ unif
x [n(r)]

. (2)

We now list the DFT exact conditions along with their
corresponding local condition:
(EC1) The correlation energy (Ec) non-positivity condi-
tion [28] is defined as Ec[n] ≤ 0. The corresponding local
condition is

ϵc(n(r)) ≤ 0. (3)

It can also be expressed in terms of F̃c as

F̃c ≥ 0. (4)



(EC2) The Ec scaling inequality [28], [33], (γ−1)Ec[nγ ] ≥
γ(γ − 1)Ec[n], has the local condition

∂F̃c

∂rs
≥ 0. (5)

(EC3) The Uc(λ) monotonicity condition [28], [34] is
dUc(λ)

dλ ≤ 0, where Uc(λ) = d(λ2Ec[n1/λ])/dλ represents
the correlation energy adiabatic connection curves. The corre-
sponding local condition is

∂2F̃c

∂r2s
≥ −2

rs
· ∂F̃c

∂rs
. (6)

(EC4) Lieb-Oxford bound [28], [35] is Uxc ≥
CLO

∫
d3r n(r) ϵ unif

x

(
n(r)

)
, where Uxc[n] = Exc[n] − Tc[n]

is the potential correlation energy and CLO = 2.27 is the
Lieb-Oxford constant, following [28]. The corresponding
local condition is

F̃xc + rs
∂F̃c

∂rs
≤ CLO. (7)

(EC5) The Lieb-Oxford extension to Exc [28], [35] is a
generalization of the Lieb-Oxford bound with Exc instead
of Uxc : Exc ≥ CLO

∫
d3r n(r) ϵ unif

x

(
n(r)

)
. The corresponding

local condition is

F̃xc ≤ CLO (8)

(EC6) The Tc upper bound condition [28], [34] is Tc[nγ ] ≤
−γ

(
∂Ec[nγ ]

∂γ

)
+ Ec[nγ ], with corresponding local condition

∂F̃c

∂rs
≤ F̃c(∞)− F̃c

rs
(9)

where F̃c(∞) is the limit of F̃c as rs →∞.
(EC7) The conjectured Tc upper bound [28], [36]–[38] is
Tc[n] ≤ −Ec[n] with local condition

∂F̃c

∂rs
≤ F̃c

rs
. (10)

III. XCVERIFIER

This section describes the design of the XCVERIFIER tool,
which verifies whether a DFA implemented in the LIBXC
library [18] satisfies the DFT local conditions in Section II.
XCVERIFIER consists of (i) XCENCODER, which encodes
the given local condition for a given LIBXC functional into
a formula ψ, and (ii) VERIFIER, which verifies whether this
encoded formula ψ is always true (valid) in the given input
domain. Because DFAs involve non-linear arithmetic and
transcendental functions, we chose the dReal solver [30] as
the core solver in VERIFIER. As a consequence, the formula
ψ generated by XCENCODER is a dReal formula.

Algorithm 1 VERIFIER(input domain D, formula ψ)

1: if D < t then
2: return
3: result, x ← dReal(φD ∧ ¬ψ)
4: if result = UNSAT then
5: print “Verified condition over domain D”
6: return
7: if result = SAT then
8: if valid(x) then
9: print “Found counterexample x”

10: else
11: print “Verification inconclusive over domain D”
12: else
13: print “Verification timed out over domain D”
14: for all D′ in split(D) do
15: VERIFIER(D′, ψ)
16: return

A. XCENCODER

Given a LIBXC functional, XCENCODER first translates the
Maple code for ϵ̃xc to Python using the CodeGeneration
package from Maple. We implemented a symbolic execution
engine for (a subset of) Python that generates the dReal
expression corresponding to the DFA. Though DFA imple-
mentations do not contain loops, arrays, etc., they do contain
(non-recursive) function calls and if-then-else statements.

XCENCODER then constructs the dReal formula ψ that
encodes the given local condition for the particular functional.
Encoding the local condition corresponding to the Ec non-
positivity condition is straightforward: XCENCODER uses the
dReal expression for ϵ̃c to directly construct the dReal
formula ϵ̃c ≤ 0.

However, the local conditions corresponding to exact condi-
tions such as Ec scaling, Lieb-Oxford, Uc monotonicity, and Tc
upper bound require computation of one or more derivatives,
In such cases, XCENCODER uses SymPy [39] to symbolically
compute the derivatives. Furthermore, the local condition
corresponding to the Tc upper bound condition (Equation 9) re-
quires computing limrs→∞ F̃c. Following [28], XCENCODER
substitutes an appropriately large value to approximate this
limit at infinity, viz. F̃c|rs=100.

B. VERIFIER

Algorithm 1 presents the pseudo-code for VERIFIER. The
VERIFIER component of XCVERIFIER takes as input (i) the
formula ψ encoding the exact condition for the DFA, and (ii) a
domain for the inputs to the DFA. We use the same input
bounds as used in Pederson and Burke [28]; for example, for
GGA functionals, the domain for rs is the interval [0.0001, 5],
and that for s is [0, 5]. Consequently, for a GGA functional,
the VERIFIER is trying to prove the validity, or satisfiability,
of the following formula:

∀rs, s . (rs ∈ [0.0001, 5] ∧ s ∈ [0, 5]) =⇒ ψ. (11)



Proving the validity of Equation 11 is equivalent to proving
that the following formula is unsatisfiable:

rs ∈ [0.0001, 5] ∧ s ∈ [0, 5] ∧ ¬ψ. (12)

VERIFIER uses the dReal solver [30] to check the satisfi-
ability of the above formula.
dReal implements a delta-complete decision frame-

work: given a formula φ, dReal returns UNSAT—φ is
unsatisfiable—or δ-SAT—the δ-weakening φδ is satisfiable for
the returned model, where a model is a satisfying assignment
to the variables in the formula. The δ-weakening φδ of a
formula φ is numerical relaxation of φ such that (i) a model
that satisfies φ will always satisfy φδ; however, the reverse
is not necessarily true, and (ii) if φδ is unsatisfiable, then φ
is also unsatisfiable. This relaxation results in dReal now
being decidable for nonlinear formulas including those with
transcendental functions, which are common in DFAs.

Though the δ-satisfiability problem is decidable in principle,
in practice, the dReal solver could also timeout: it was
unable to determine whether formula φ is UNSAT or δ-SAT
in the given time limit. Our preliminary results showed that
dReal would timeout on the formula in Equation 12 for
most functional/condition pairs, even when given a time limit
of 24 hours. To improve the performance of VERIFIER, we
implement a domain-splitting technique that partitions the
input domain and uses dReal to solve the formula ¬ψ
on each subdomain separately. This simple strategy greatly
improves the performance of VERIFIER. Furthermore, one of
the goals of XCVERIFIER is to determine the input regions
where the DFA implementation violates the local condition.
Thus, VERIFIER also performs the domain-split when dReal
returns a valid model: an input that indeed violates the given
condition. This allows VERIFIER to isolate the subregions
where the DFA implementation violates the local condition.

Algorithm 1 presents the pseudo-code for VERIFIER, and
Figure 1f shows a graphical representation of the output of
VERIFIER when verifying the conjectured Tc upper bound
condition for the PBE functional.

The dReal solver is called on Line 3 to find a satisfying
assignment to the formula φD ∧¬ψ, where φD is the formula
encoding the domain constraints on the inputs to the DFA
and ψ encodes the local condition for the functional. If the
result is UNSAT, then VERIFIER returns after recording that
the condition was verified over domain D (Line 6). This
is indicated using in Figure 1f. If the result is δ-SAT,
dReal will also return a model x for the formula. In Line 8,
valid(x) checks if this model is a valid counterexample
by plugging the values back into ψ, which encodes the local
condition. If the condition is indeed violated, then VERIFIER
records it as a counterexample (Line 9), indicated using .
Occasionally, dReal may return SAT with a model that does
not actually violate ψ. This happens due to the δ-satisfiability
procedure of dReal: the model must satisfy the weakened
formula (¬ψ)δ , but not necessarily the original formula ¬ψ.
In such cases, VERIFIER records the result as inconclusive
(Line 11), indicated using in Figure 1f. We use a two

hour time limit for the dReal solver; if dReal is unable to
determine (un)satisfiability in this limit, VERIFIER interrupts
it and records that the verification timed out for domain D
(Line 13), indicated using in Figure 1f. Increasing the
timeout in our experiments did not enable dReal to solve
more formulas.

Line 14 is executed if the result is SAT or when dReal
times out. VERIFIER calls split(D), which partitions each
input dimension of D into two equal parts. VERIFIER is
recursively called on each subdomain D′ in Line 15. We set
a lower limit on the size of input domain as the base case for
the recursion. On Line 2, VERIFIER returns if the given input
domain is too small as determined by the threshold t; we used
t = 0.05 in our experiments.

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of XCVERIFIER for
verifying local conditions for DFA implementations in LIBXC,
and compares the results to the prior PB approach [28].

Our experiments were designed to answer the following
research questions:

RQ1 Is XCVERIFIER able to verify or find counterex-
amples for local conditions of DFA implementations
(Section IV-B)?

RQ2 How does XCVERIFIER compare to the PB ap-
proach (Section IV-C)?

A. Experimental Setup

We use the following five DFAs in our experiments:
PBE [22], a popular non-empirical GGA DFA; SCAN [24],
a fully constrained non-empirical meta-GGA DFA satisfying
all known properties of DFAs; LYP [25], and empirical DFA
that is a key component of several commonly-used DFAs;
AM05 [31], which shows efficient and superior performance
on solids [40]; and VWN RPA [32], an LDA functional.

For each of these DFAs, we consider each of the applicable
conditions from Section II. Note that the Lieb-Oxford con-
ditions only apply to functionals with both an exchange and
correlation component available (e.g., PBE, SCAN).

The PB approach is the state of the art for assessing
condition satisfaction in DFT. For a given DFA and condition,
the PB approach draws 105 uniform samples each for rs
and s, which are then meshed into a grid. PB then calls the
LIBXC implementation of the DFA for each of the points in
the grid. This grid is used to numerically compute the limits
and gradients necessary for the conditions using the NumPy
package in Python [41]. Then the condition is checked at each
point in the grid. The condition is assumed to be satisfied for
the DFA if all the points in the grid pass the condition.

B. Verifying Local Conditions using XCVERIFIER

Table I summarizes the result of using XCVERIFIER to
verify the local condition corresponding to each DFA exact
condition in Section II for the five DFAs. The results described
below are summarized in Table I. Visualizations for LYP and
PBE are shown in Figures 1 and 2, respectively.



TABLE I: Verifying local conditions for DFT exact conditions for DFAs using XCVERIFIER.
✓: XCVERIFIER verified that the DFA satisfies the condition on the entire input domain;
✓∗: XCVERIFIER verified that the DFA satisfies the condition on part of the input domain with the rest timing out/inconclusive;
?: XCVERIFIER reported timeout/inconclusive for all of the input domain;
−: the condition does not apply to the DFA;
✗: XCVERIFIER found a counterexample showing that the DFA does not satisfy the local condition.

Local condition PBE LYP AM05 SCAN VWN RPA

Ec non-positivity (Equation 4) ✓∗ ✗ ✓ ? ✓
Ec scaling inequality (Equation 5) ✓∗ ✗ ✓∗ ? ✓
Uc monotonicity (Equation 6) ? ✗ ? ? ✓
Tc upper bound (Equation 9) ✓∗ ✗ ✓ ? ✓
Conjectured Tc upper bound (Equation 10) ✗ ✗ ✓∗ ? ✓∗

LO bound (Equation 7) ✓∗ − − ? −
LO extension to Exc (Equation 8) ✓ − − ? −

PBE For the Ec non-positivity condition and the Lieb-Oxford
bound, XCVERIFIER is able to verify the entire input domain
except for some timed-out and inconclusive regions along the
s-axis (Figure 1d). The verified region is rs > 0.9375 for the
Ec non-positivity condition and rs > 0.0781 for the Lieb-
Oxford bound. The Lieb-Oxford extension to Exc is verified
for the entire input domain (Figure 1e). For the Ec scaling
inequality, XCVERIFIER verifies most of the bottom third of
the input domain and times out for the rest. There are also a
few small inconclusive regions for high s. For the Tc upper
bound condition, XCVERIFIER verifies the bottom two-thirds
of the input domain and times out for the rest.

For the conjectured Tc upper bound, XCVERIFIER finds a
large counterexample region covering the upper left diagonal
of the input domain (Figure 1f). There is an inconclusive re-
gion along the border of the counterexample region. XCVER-
IFIER verifies or times out for the rest of the input domain.

Finally, XCVERIFIER times out everywhere for the Uc
monotonicity condition.

LYP For the Ec non-positivity condition, XCVERIFIER finds
counterexamples at s > 1.6563 (Figure 2d) and the remainder
of the input domain is verified to satisfy the condition. For
the Ec scaling inequality, the counterexamples are at rs < 2.5
and s > 1.4844 (Figure 2e). For the Tc upper bound condi-
tion (Figure 2f), the counterexamples are in a small region
at rs > 4.8437 and s > 2.4219, and for the conjectured
Tc upper bound condition, the region is rs > 0.625 and
s > 1.3281. For the Uc monotonicity condition, XCVERIFIER
finds counterexamples at s > 1.4844 and rs < 1.4062. The
rest of the region is partially verified or timed-out. There are
some small inconclusive or timed-out regions on the borders
of the counterexample regions for each of the conditions.

LYP is the only DFA where XCVERIFIER finds counterex-
amples to all applicable properties.

AM05 XCVERIFIER verifies that AM05 satisfies the Ec non-
positivity and the Tc upper bound conditions in the entire input
domain. It also verifies most of the domain for the Ec scaling
inequality and the conjectured Tc upper bound conditions, but
times out along the s-axis at rs < 0.0781 for the Ec scaling
inequality and rs < 0.1562 for conjectured Tc upper bound.

For the Uc monotonicity condition, XCVERIFIER times out
everywhere.

SCAN For the SCAN functional, XCVERIFIER times out for
all of the conditions.

VWN RPA XCVERIFIER verifies that VWN RPA satisfies the
Ec non-positivity, Ec scaling inequality, and Tc upper bound
conditions for the entire input domain. It also verifies the Uc
monotonicity condition where it timed out for several of the
other functionals. For the conjectured Tc upper bound, it ver-
ifies the entire region except along the s-axis at rs < 0.0781,
where it returns inconclusive.

Summary for RQ1: In our evaluation of the seven exact
conditions for the five DFAs, XCVERIFIER was able to
verify or find counterexamples for 13 condition-DFA pairs
and partially verify seven, as shown in Table I. This demon-
strates the feasibility of using formal-methods techniques like
XCVERIFIER in verifying DFA implementations. However,
XCVERIFIER also timed out for nine of the 29 applicable
pairs, particularly for the SCAN functional, which was de-
signed to satisfy all known properties of DFAs. Thus, there is
room for improvement in formal-methods techniques for DFT.

C. Comparing XCVERIFIER to PB

This section compares the results for XCVERIFIER to the
PB approach. Table II shows the consistency between the
results of PB and XCVERIFIER.

Out of the five functionals verified, XCVERIFIER returns
counterexample regions consistent,

⊙
, with PB for the LYP

DFA for all applicable properties. It also finds that the coun-
terexample regions are consistent for the conjectured Tc upper
bound for PBE.

Several of the results are not inconsistent, marked with⊙∗, meaning that neither method finds counterexamples for
the condition. This is the case for when PB finds no coun-
terexamples, and XCVERIFIER either verifies the entire region
or partially verifies and partially times out (e.g., for PBE
in Figure 1d).

Due to the timeouts of XCVERIFIER for all of the properties
for SCAN (Table I), we cannot compare those results for PB
and XCVERIFIER. We mark them as ? in Table II.



TABLE II: Comparison between results for XCVERIFIER and PB approach.⊙
: results of PB are consistent with XCVERIFIER;

⊙∗: results of PB are not inconsistent with XCVERIFIER;
−: condition does not apply to DFA; ?: XCVERIFIER times out.

Local condition PBE LYP AM05 SCAN VWN RPA

Ec non-positivity (Equation 4)
⊙∗ ⊙ ⊙∗ ?

⊙∗

Ec scaling inequality (Equation 5)
⊙∗ ⊙ ⊙∗ ?

⊙∗

Uc monotonicity (Equation 6) ?
⊙

? ?
⊙∗

Tc upper bound (Equation 9)
⊙∗ ⊙ ⊙∗ ?

⊙∗

Conjectured Tc upper bound (Equation 10)
⊙ ⊙ ⊙∗ ?

⊙∗

LO bound (Equation 7)
⊙∗ − − ? −

LO extension to Exc (Equation 8)
⊙∗ − − ? −

(a) Ec non-positivity w. PB (b) Lieb-Oxford ext. w. PB (c) Conj. Tc upper bound w. PB

(d) Ec non-positivity w. XCVERIFIER (e) Lieb-Oxford ext. w. XCVERIFIER (f) Conj. Tc upper bound w. XCVERIFIER

Fig. 1: Regions where the PBE functional satisfies or violates conditions according to PB (top) and XCVERIFIER (bottom).
For PB: (region hatched) is a counterexample to the condition, is a point that satisfies the condition.
For XCVERIFIER: is a region that contains a counterexample marked with ×, is a region that is verified to satisfy the
condition, indicates a timeout, and indicates an inconclusive result.

Summary for RQ2: The results of XCVERIFIER are con-
sistent with the PB approach (Table II). For DFA-condition
pairs for which PB finds counterexamples, XCVERIFIER also
finds counterexamples in similar regions. For pairs where PB
does not find counterexamples, XCVERIFIER either verifies
the input domain, or partially times out and partially verifies
the domain.

V. RELATED WORK

A. Analysis of Density Functional Theory Approximations

To the best of our knowledge, ours is the first work that
uses formal methods to verify correctness in the context of
density functional theory, an important scientific computing
application. Prior work has used a testing-based approach,
which is more scalable but does not provide formal guarantees.

As discussed earlier, Pederson and Burke [28] use a grid-
search to evaluate whether the DFA satisfies the DFT exact
conditions. Lehtola and Marques [42] show that many recent
DFAs are numerically ill-behaved by studying their accuracy
in computing the total exchange-correlation energy.

B. Correctness in High Performance Computing

Correctness in scientific computing is recognized as a major
challenge in HPC [43], [44], which needs formal methods
that address the unique challenges in this domain. Progress
to date includes the verification of mathematical properties in
a conjugate gradient solver, a finite difference stencil, and a
mesh quality metric [45], PDE solvers [46], specific properties
of CG [47] and LU decomposition [48], and the floating-
point equivalence of manually and automatically differentiated
code [49]. The above are orthogonal to our goal of verifying



(a) Ec non-positivity w. PB (b) Ec scaling inequality w. PB (c) Tc upper bound w. PB

(d) Ec non-positivity w. XCVERIFIER (e) Ec scaling inequality w. XCVERIFIER (f) Tc upper bound w. XCVERIFIER

Fig. 2: Regions where the LYP functional satisfies or violates conditions according to PB (top) and XCVERIFIER (bottom).
For PB: (region hatched) is a counterexample to the condition, is a point that satisfies the condition.
For XCVERIFIER: is a region that contains a counterexample marked with ×, is a region that is verified to satisfy the
condition, indicates a timeout, and indicates an inconclusive result.

exact conditions of density functional theory approximations.
Extending our approach of using dReal to verify properties of
other scientific computations is an interesting future direction.

C. Analysis of Floating-Point Programs

Many testing and analysis techniques for floating-point
programs have been developed in the past decade. The first set
of techniques are general approaches that aim to achieve high-
coverage of numerical code [50], [51], conduct differential
testing of numerical libraries [52], and perform mutation test-
ing of floating-point expressions given a real specification [53].
However, it has been shown that simply achieving high code
coverage in numerical programs does not uncover numerical
issues in most cases [51]. Additionally, differential testing is
not feasible for DFA implementations because most of them
are unique.

A large body of work focuses on performing automated
error analysis of floating-point programs [54]–[65]. While
some of these approaches provide sound error bounds of
floating-point programs, they suffer from important limitations
with respect to program size and control structures supported.
In the absence of techniques that can reason about floating-
point error in non-trivial programs, a rich area of research in
software testing has focused on how to efficiently generate
inputs that maximize error in the output of a program [51],
[66], [67], which can shed light on the potentially worst
error a floating-point program could incur. Similarly, work has

proposed techniques to generate inputs that trigger floating-
point exceptions [68], [69]. Calculating error bounds of DFAs
is orthogonal to our goal of verifying physical and numerical
properties of their implementations.

Other existing work on floating-point programs has explored
finding function input ranges, also referred to as regimes,
with the purpose of improving the accuracy of floating-point
expressions [70] or optimizing floating-point efficiency [71].
These approaches are based on either estimating error based
on dynamic input sampling, or statically performing an error
analysis, which have their own limitations, as described earlier.

VI. DISCUSSION

A. Improving Scalability of the Solver

In our experiments, XCVERIFIER was unable to verify
any of the exact conditions of the SCAN functional, which
has been designed to satisfy all known exact conditions.
SCAN is significantly more complex than the other functionals
we considered, and also involves the use of transcendental
functions such as exp and log. This causes dReal to time
out even for the relatively simple Ec non-positivity condi-
tion, and even when the input domain is reduced 32×. It
would be interesting to investigate approaches to improve the
performance of the solver so that it can tackle the SCAN
functional. Apart from its popularity, the SCAN functional
will serve as a fascinating use case: there is a progression
of DFAs—rSCAN, r++SCAN, r2SCAN, r4SCAN—proposed



in the literature that were designed with different adherence
to exact conditions to improve the numerical stability of the
original SCAN functional [72]–[74].

B. Expanding to More DFA-Condition Pairs

Our evaluation demonstrated the robustness of the XCEN-
CODER to handle a wide variety of DFAs and exact conditions.
The ultimate goal of our research is to be able to analyze all
the 500+ functionals in LIBXC for all known DFT exact con-
ditions. Future work will continue to expand our evaluation,
and will aim to integrate our verification tool into LIBXC, e.g.,
as part of the continuous integration (CI) for LIBXC.

C. Numerical Issues With DFAs

Apart from verifying known exact conditions for DFA
implementations, it would be interesting to analyze numer-
ical issues of the implementations with the goal of using
formal methods to find and fix numerical issues in DFA
implementations. This is a challenging problem involving
reasoning about floating points and dealing with transcendental
functions like sin, log and exp. The functional forms of DFAs
themselves can also be a source of numerical issues. Some
DFAs include different functions that apply to different input
domains, and must ensure continuity when switching from
one domain to another. Additionally, the parametrization of
the DFA may cause issues. Even in the simple case of the
Local Density Approximation (LDA), the Perdew-Zunger [75]
parametrization of the results of Ceperley and Alder [76]
includes potentially inaccurate numerical constants that lead to
discontinuities of the exchange-correlation energy at a given
matching point.

The functional form of a DFA may also make it sensitive to
inaccuracies in its input data. While a given implementation of
a DFA may yield correct answers for an exactly known (e.g.,
exponential) density, it may result in large numerical errors
if the input density is noisy, or if the density and its gradient
are not numerically consistent. This is particularly problematic
in regions of low density, e.g., a point far from a molecule
placed in vacuum. Such large errors may lead to inaccurate
energies or slow convergence in the solution of the Kohn-
Sham equations. For example, the sensitivity of the SCAN
functional requires the use of extremely fine grids to represent
the electron density in order to avoid large numerical errors.
This led some authors to modify the SCAN functional to avoid
this numerical issue, resulting in a slightly different DFA [73].
In other cases, an analytical reformulation of a DFA is used
to avoid numerical issues [77] without modifying it. However,
these fixes are ad hoc, and there is no known general recipe
for avoiding the numerical issues of a DFA.

VII. CONCLUSION

This paper presented XCVERIFIER, an approach for ver-
ifying whether a DFA implementation satisfies the DFT ex-
act conditions. XCVERIFIER automatically encodes the DFA
implementation from LIBXC and a given exact condition
into a dReal formula, symbolically performing any required

derivative calculations. It uses the dReal solver to verify
whether the condition is true or find a violation to it for a
given input domain. XCVERIFIER also implements a domain-
splitting technique to improve performance, reducing solver
timeouts, and isolating the input regions where the condition
is satisfied or violated.

We evaluated XCVERIFIER by verifying seven exact con-
ditions (from Pederson and Burke [28]) for five popular
DFAs. XCVERIFIER was successfully able to verify or find
a counterexample for 13 out of the 29 (valid) DFA-condition
pairs, and it was able to partially verify an additional seven
pairs. However, it timed out for nine pairs, which included all
the conditions for the SCAN functional. We found that the
results of the PB approach, which used grid search to check
DFT exact conditions, were largely consistent with those of
XCVERIFIER. These results demonstrate promise and future
challenges of using formal methods for DFT.
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[51] H. Guo and C. Rubio-González, “Efficient generation of error-inducing
floating-point inputs via symbolic execution,” in ICSE. ACM, 2020,
pp. 1261–1272.

[52] J. Vanover, X. Deng, and C. Rubio-González, “Discovering discrepan-
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