Formal Methods in System Design (2025) 65:133-162
https://doi.org/10.1007/s10703-025-00471-8

®

Check for
updates

Memory-efficient fixpoint computation

Sung Kook Kim' - Arnaud J. Venet? - Aditya V. Thakur'

Received: 27 October 2021/ Accepted: 7 February 2025 / Published online: 10 April 2025
© The Author(s) 2025

Abstract

Practical adoption of static analysis often requires trading precision for performance. This
paper focuses on improving the memory efficiency of abstract interpretation without sac-
rificing precision or time efficiency. Computationally, abstract interpretation reduces the
problem of inferring program invariants to computing a fixpoint of a set of equations. This
paper presents a method to minimize the memory footprint in Bourdoncle’s iteration strategy,
a widely-used technique for fixpoint computation. Our technique is agnostic to the abstract
domain used. We prove that our technique is optimal (i.e., it results in minimum memory
footprint) for Bourdoncle’s iteration strategy while computing the same result. We evaluate
the efficacy of our technique by implementing it in a tool called MIKOS, which extends the
state-of-the-art abstract interpreter IKOS. On average MIKOS demonstrated a 24.57x and
2.29x reduction in peak-memory usage compared to IKOS when verifying user-provided
assertions and performing interprocedural buffer-overflow analysis, respectively.

Keywords Static program analysis - Abstract interpretation - Fixpoint computation

1 Introduction

Abstract interpretation [1, 2] is a general framework for expressing static analysis of pro-
grams. Program invariants inferred by an abstract interpreter are used in client applications
such as program verifiers, program optimizers, and bug finders. To extract the invariants, an
abstract interpreter computes a fixpoint of an equation system approximating the program
semantics. The efficiency and precision of the abstract interpreter depends on the iteration
strategy, which specifies the order in which the equations are applied during fixpoint com-
putation.

The recursive iteration strategy developed by Bourdoncle [3] is widely used for fixpoint
computation in academic and industrial abstract interpreters such as NASA IKOS [4], Crab

X Aditya V. Thakur
avthakur @ucdavis.edu

Sung Kook Kim
sklkim @ucdavis.edu

Arnaud J. Venet

ajv@fb.com

Department of Computer Science, University of California, One Shields Ave, Davis, CA 95616,
USA

2 Meta Inc., 1 Hacker Way, Menlo Park, CA 94025, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-025-00471-8&domain=pdf
http://orcid.org/0000-0003-3166-1517

134 Formal Methods in System Design (2025) 65:133-162

[5], Facebook SPARTA [6], Kestrel Technology CodeHawk [7], and Facebook Infer [8].
Extensions to Bourdoncle’s approach that improve precision [9] and time efficiency [10]
have also been proposed.

This paper focuses on improving the memory efficiency of abstract interpretation. This
is an important problem in practice because large memory requirements can prevent clients
such as compilers and developer tools from using sophisticated analyses. This has motivated
approaches for efficient implementations of abstract domains [11-13], including techniques
that trade precision for efficiency [14-16].

This paper presents a technique for memory-efficient fixpoint computation. Our technique
minimizes the memory footprint in Bourdoncle’s recursive iteration strategy. Our approach
is agnostic to the abstract domain and does not sacrifice time efficiency. We prove that our
technique exhibits optimal peak-memory usage for the recursive iteration strategy while com-
puting the same fixpoint (Sect.3). Specifically, our approach does not change the iteration
order but provides a mechanism for early deallocation of abstract values. Thus, there is no
loss of precision when improving memory performance. Furthermore, such “backward com-
patibility” ensures that existing implementations of Bourdoncle’s approach can be replaced
without impacting clients of the abstract interpreter, an important requirement in practice.

Suppose we are tasked with proving assertions at program points 4 and 9 of the control-
flow graph G3(V, ) in Fig. 1c. Current approaches (Sect.2.1) allocate abstract values for
each program point during fixpoint computation, check the assertions at 4 and 9 after fixpoint
computation, and then deallocate all abstract values. In contrast, our approach deallocates
abstract values and checks the assertions during fixpoint computation while guaranteeing
that the results of the checks remain the same and that the peak-memory usage is optimal.

We prove that our approach deallocates abstract values as soon as they are no longer
needed during fixpoint computation. Providing this theoretical guarantee is challenging for
arbitrary irreducible graphs such as G3. For example, assuming that node 8 is analyzed after
3, one might think that the fixpoint iterator can deallocate the abstract value at 2 once it
analyzes 8. However, 8 is part of the strongly-connected component {7, 8}, and the fixpoint
iterator might need to iterate over node 8 multiple times. Thus, deallocating the abstract value
at 2 when node 8 is first analyzed will lead to incorrect results. In this case, the earliest that
the abstract value at 2 can be deallocated is after the stabilization of component {7, 8}.

Furthermore, we prove that our approach performs the assertion checks as early as possible
during fixpoint computation. Once the assertions are checked, the associated abstract values
are deallocated. For example, consider the assertion check at node 4. Notice that 4 is part
of the strongly-connected components {4, 5} and {3, 4, 5, 6}. Checking the assertion the first
time node 4 is analyzed could lead to an incorrect result because the abstract value at 4 has
not converged. The earliest that the check at node 4 can be executed is after the convergence
of the component {3, 4, 5, 6}. Apart from being able to deallocate abstract values earlier,
early assertion checks provide partial results on timeout.

The key theoretical result (Theorem 12) is that our iteration strategy is memory-optimal
(i.e., it results in minimum memory footprint) while computing the same result as Bour-
doncle’s approach. Furthermore, we present an almost-linear time algorithm to compute this
optimal iteration strategy (Sect.4).

We have implemented this memory-optimal fixpoint computation in a tool called
MIKOS (Sect.5), which extends the state-of-the-art abstract interpreter for C/C++, IKOS
[4]. We compared the memory efficiency of MIKOS and IKOS on the following tasks:

T1 Verifying user-provided assertions. Task T1 represents the program-verification client
of a fixpoint computation. We performed interprocedural analysis of 784 SV-COMP

@ Springer



Formal Methods in System Design (2025) 65:133-162 135

Fig.1 Control-flow graphs

(c) G3: nested loops

2019 benchmarks [17] using reduced product of Difference Bound Matrix with variable
packing [14] and congruence [18] domains.

T2 Proving absence of buffer overflows. Task T2 represents the bug-finding and compiler-
optimization client of fixpoint computation. In the context of bug finding, a potential
buffer overflow can be reported to the user as a potential bug. In the context of compiler
optimization, code to check buffer-access safety can be elided if the buffer access is
verified to be safe. We performed interprocedural buffer overflow analysis of 426 open-
source programs using the interval abstract domain.

On Task T1, MIKOS’s peak-memory usage is 4.07% of IKOS’s peak-memory usage on
average, which is a 24.57x reduction. For instance, peak-memory required to analyze the
SV-COMP 2019 benchmark 1dv-3.16-rcl/205_9a-net-rt18187 decreased from
46 GB to 56 MB. Also, while 1dv-3.14/usb-mx1111sf spaced out in IKOS with 64
GB memory limit, peak-memory usage was 21 GB for MIKOS. On Task T2, MIKOS’s peak-
memory usage is, on average, 43.7% of IKOS’s peak-memory usage on average, which is
a 2.29x reduction. MIKOS shows a decrease in peak-memory usage to 43.7% (2.29x) on
average compared to IKOS. For instance, peak-memory required to analyze a benchmark
ssh-keygen decreased from 30 GB to 1 GB.

The contributions of the paper are as follows:

e A memory-optimal technique for Bourdoncle’s recursive iteration strategy that does not
sacrifice precision or time efficiency (Sect. 3).

e An almost-linear time algorithm to construct our memory-efficient iteration strat-
egy (Sect.4).

e MIKOS, an interprocedural implementation of our approach (Sect. 5).

e An empirical evaluation of the efficacy of MIKOS using a large set of C bench-
marks (Sect. 6).

Section 2 presents necessary background on fixpoint computation, including Bourdoncle’s
approach; Sect. 7 presents related work; Sect. 8 concludes.

@ Springer



136 Formal Methods in System Design (2025) 65:133-162

2 Fixpoint computation preliminaries

This section presents background on fixpoint computation that will allow us to clearly state the
problem addressed in this paper (Sect.2.3). This section is not meant to capture all possible
approaches to implementing abstract interpretation. However, it does capture the relevant
high-level structure of abstract-interpretation implementations such as IKOS [4].

Consider an equation system ® whose dependency graph is G(V, -). The graph G typi-
cally reflects the control-flow graph of the program, though this is not always true. The aim
is to find the fixpoint of the equation system &:

PRE[v] = | _|{PosT[p] | p— v} veV
POST[v] = 7, (PRE[v]) vev 1)

The maps PRE: V — A and POST: V — A maintain the abstract values at the beginning and
end of each program point, where A is an abstract domain. The abstract transformer 7, : A —
A overapproximates the semantics of program point v € V. After fixpoint computation,
PRE[v] is an invariant for v € V.

Client applications of the abstract interpreter typically query these fixpoint values to
perform assertion checks, program optimizations, or report bugs. Let Vo C V be the set
of program points where such checks are performed, and let ¢, : A — bool represent the
corresponding functions that performs the check for each v € V. To simplify presentation,
we assume that the check function merely returns true or false. Thus, after fixpoint
computation, the client application computes ¢, (PRE[v]) for each v € V.

The exact least solution of the system Eq.1 can be computed using Kleene iteration
provided A is Noetherian. However, most interesting abstract domains require the use of
widening (V) to ensure termination followed by narrowing to improve the post solution. In this
paper, we use “fixpoint” to refer to such an approximation of the least fixpoint. Furthermore,
for simplicity of presentation, we restrict our description to a simple widening strategy.
However, our implementation (Sect.5) uses more sophisticated widening and narrowing
strategies implemented in state-of-the-art abstract interpreters [4, 9].

An iteration strategy specifies the order in which the individual equations are applied,
where widening is used, and how convergence of the equation system is checked. For clarity
of exposition, we introduce a Fixpoint Machine (FM) consisting of an imperative set of instruc-
tions. An FM program represents a particular iteration strategy used for fixpoint computation.
The syntax of Fixpoint Machine programs is defined by the following grammar:

Prog:: = exec vV repeat v [Prog] V Prog § Prog ,v € V (2)

Informally, the instruction exec v applies 7, for v € V; the instruction repeat v [P;]
repeatedly executes the FM program P; until convergence and performs widening at v; and
the instruction Pj § P, executes FM programs P; and P, in sequence.

The syntax (Eq.2) and semantics (Fig. 2) of the Fixpoint Machine are sufficient to express
Bourdoncle’s recursive iteration strategy (Sect. 2.1), a widely-used approach for fixpoint com-
putation [3]. We also extend the notion of iteration strategy to perform memory management
of the abstract values as well as perform checks during fixpoint computation (Sect.2.2).

@ Springer



Formal Methods in System Design (2025) 65:133-162 137

2.1 Bourdoncle’s recursive iteration strategy

In this section, we review Bourdoncle’s recursive iteration strategy [3] and show how to
generate the corresponding FM program.

Bourdoncle’s iteration strategy relies on the notion of weak topological ordering (WTO)
of a directed graph G(V,—). A WTO is defined using the notion of a hierarchical total
ordering (HTO) of a set.

Definition 1 A hierarchical total ordering H of a set V is a well parenthesized permutation
of V without two consecutive “(”. O

An HTO 'H is a string over the alphabet V augmented with left and right parenthesis.
Alternatively, we can denote an HTO H by the tuple (V, <, ), where < is the total order
induced by H over the elements of V and w: V — 2V. The elements between two matching
parentheses are called a component, and the first element of a component is called the head.
Given! € V, w(l) is the set of heads of the components containing /. We use C: V — 2V to
denote the mapping from a head to its component.

Example1 Let V = {1,2,3,4,5,6,7,8,9}. An example HTO H;(V,<X,w) is 12
3456789.w()=0foralll € V. H; has no components. O

Example2 1etV ={1,2,3,4,5,6,7,8,9}. An example HTO H,(V, <X, w)is 1 2 3 (4 5)
6(78)9.w3) =0, w5 = {4}, and w(4) = {4}. It has components C(4) = {4, 5} and
C(1) = {7, 8} o

Example3 Let V. = {1,2,3,4,5,6,7,8,9). An example HTO H3(V,<, o) is 12
(3(45)6)(78) 9 wB3) = {3}, w5) = {3,4}, and w(1) = @. It has components
C(@) = {4,5), C(7) = {7, 8} and C(3) = {3, 6} UC(4). O

A weak topological ordering (WTO) W of a directed graph G(V, -) can now be defined
using the notion of an HTO.

Definition 2 A weak topological ordering W(V, X, w) of a directed graph G(V,—) is an
HTO H(V, <, w) such that for every edge u — v, either (i) u < v, or (ii) v < u and

v e wu). O
Example 4 H; in Example 1 is a WTO W), of the graph G (Fig. 1a). O
Example 5 H in Example 2 is a WTO W, of the graph G, (Fig. 1b). O
Example 6 H3 in Example 3 is a WTO W; of the graph G3 (Fig. 1¢). O

Given a directed graph G (V, —») that represents the dependency graph of the equation sys-
tem, Bourdoncle’s approach uses a WTO W(V, <, w) of G to derive the following recursive
iteration strategy:

e The total order < determines the order in which the equations are applied. The equation
after a component is applied only after the component stabilizes.

e The stabilization of a component C(%) is determined by checking the stabilization of the
head h.

e Widening is performed at each of the heads.

@ Springer



138 Formal Methods in System Design (2025) 65:133-162

We now show how the WTO can be represented using the syntax of our Fixpoint Machine
(FM) defined in Eq. 2. The following function genProg: WTO — Prog maps a given WTO
W to an FM program:

repeat v [genProg(W))] if W= (v W)
genProg(W) := { genProg(Wj) §genProgW,) if W =W W, 3)
execv ifW=v

Each node v € V is mapped to a single FM instruction by genProg; we use Inst[v] to
refer to this FM instruction corresponding to v. Note that if v € V is a head, then Inst[v]is
an instruction of the form repeat v [ ... ], else Inst[v]is exec v.

Example 7 The WTO W of graph G (Fig.1a)is1 2 3 4 5 6 7 8 9. The corresponding FM
program is P = genProg(W)) = exec 1 § exec 2 § exec 3 § exec4 ¢ exec S ¢
exec 6 § exec7 § exec 8 § exec 9. Note that Inst[v] = execvforallv € [1,9].O

Example 8 The WTO W, of graph G, (Fig. 1b)is 1 2 3 (4 5) 6 (7 8) 9. The corresponding
FM program is P, = genProg(W,) = exec 1§ exec 25 exec 35 repeat 4 [exec 5] %
exec 63 repeat 7 [exec 8] § exec 9.

Note that Inst[4] = repeat 4 [exec 5]. m]

Example 9 The WTO W of graph G3 (Fig. 1c)is 1 2 (3 (4 5) 6) (7 8) 9. The correspond-
ing FMprogramis P3 =genProg(W3) =exec lsexec2irepeat 3 [repeat 4 [exec5]s
exec 6] §repeat 7 [exec 8] sexec 9. O

Ignoring the text in gray, the semantics of the FM instructions shown in Fig.2 capture
Bourdoncle’s recursive iteration strategy. The semantics are parameterized by the graph
G(V,-»)and a WTO W(V, <X, w).

2.2 Memory management during fixpoint computation

In this paper, we extend the notion of iteration strategy to indicate when abstract values are
deallocated and when checks are executed. The gray text in Fig.2 shows the semantics of
the FM instructions that handle these issues. The right-hand side of = is executed if the
left-hand side evaluates to true. Recall that the set V¢ C V is the set of program points that
have assertion checks. The map CK: V¢ — bool records the result of executing the check
¢, (PRE[u]) for each u € V. Thus, the output of the FM program is the map CK. In practice,
the functions ¢, are expensive to compute. Furthermore, they often write the result to a
database or report the output to a user. Consequently, we assume that only the first execution
of ¢, is recorded in CK.
The memory configuration M is a tuple (DPOST, ACHK, DposT, DPRE’) where

e The map DPOST: V — V controls the deallocation of values in POST that have no further
use. If v = DPoOST[u], POST[u] is deallocated after the execution of Inst[v].

e The map ACHK: V¢ — V controls when the check function ¢, corresponding tou € V¢
is executed, after which the corresponding PRE value is deallocated. If ACHK[u] = v,
assertions in u are checked and PRE[u] is subsequently deallocated after the execution
of Inst[v].

e The map DprosT’ : V — 2V control deallocation of POST values that are recomputed and
overwritten in the loop of a repeat instruction before its next use. If v € DPOST [u],
PosT[u] is deallocated in the loop of Inst[v].

@ Springer



Formal Methods in System Design (2025) 65:133-162 139

G(V,=>), WTO W(V, =, w),
Vo €V, memory configuration M (DpPOsT, ACHK, DPOSTK, DPRE/‘)
lef
[exec v] 54 2" Pre[v] « | |[{PosT[p] | p > v}

foreach u € V: v = DprosT[u] = free PosT[u]
PosT[v] <+ 74 (PRE[v])
v & Vo = free PRE[v]
foreach u € Vo : v = AcHk[u] = Ck[u] + ¢y (PRE[u]);

free PRE[u]

[repeat v [PI] 0 " tpre « | J{PosTlp] | D> 0 A v € w(p)) }Preamble

do {
foreach u € V: v € Dpos-rl[u] = free PosT[u]
foreach u € Vg : v € me-:e[u] = free PRE[u]
PRrE[v], PosT[v] «— tpre, 7y (tpre) LOOp
P15
tpre + Pre[v]V | |[{PosT[p] | p > v}
} while(tpre Z PrRE[v])

foreach u € V: v = DposT[u] = free PosT[u]
v & Vo = free PRE[v]

Postamble

foreach u € Vo : v = Achk[u] = Ck[u] <+ ¢y (PRE[u]);
free PRE[u]

def
[P1 3 Pol g S 1P1] oy

[P2] pq

Fig.2 The semantics of the fixpoint machine (FM) instructions of Eq.2

e The map DPRE': Vi — 2V control deallocation of PRE values that are recomputed and
overwritten in the loop of a repeat instruction before its next use. If v € DPRE‘[u],
PRE[«] is deallocated in the loop of Inst[v].

To simplify presentation, the semantics in Fig.2 does not make explicit the allocations
of abstract values: if a POST or PRE value that has been deallocated is accessed, then it is
allocated and initialized to L.

2.3 Problem statement

Two memory configurations are equivalent if they result in the same values for each check
in the program:

Definition 3 Given an FM program P, memory configuration M is equivalent to M,
denoted by [P s, = [P]m,. iff forall u € V¢, we have CK;[u] = CKp[u], where CK; and
CK; are the check maps corresponding to execution of P using M and Mo, respectively. O

The default memory configuration Mg, performs checks and deallocations at the end of
the FM program after fixpoint has been computed.

Definition4 Given an FM program P, the default memory configuration

Mt (DPOSTdﬂt,ACHKdﬂt,DPOSTZdﬂt,DPREZdﬂ[) is DPOST4qe[v] = z for all v € V,
ACHKgqi[c] = z for all ¢ € V¢, and DPOST gny = DPREl4p = @, where z is the last
instruction in P. O

@ Springer



140 Formal Methods in System Design (2025) 65:133-162

Example 10 Let Ve = {4, 9).

For all FM programs, Py, P> and P3,

DPOSTgai[v] = 9 for all v € V. That is, all POST values are deallocated at the end of the
fixpoint computation. Also, ACHKyg[4] = ACHKqg[9] = 9, meaning that assertion checks
also happen at the end.

DpOST' afit = DPRE gy = ¥, so the FM programs do not clear abstract values whose values
will be recomputed and overwritten in a loop of repeat instruction. O

Given an F'M program P, a memory configuration M is valid for P iff it is equivalent to
the default configuration; i.e., [P]m = [P Mmyq-

Furthermore, a valid memory configuration M is optimal for a given FM program iff the
memory footprint of [P] ¢ is smaller than or equal to that of [P] ¢ for all valid memory
configuration M’. The problem addressed in this paper can be stated as:

Given an FM program P, find an optimal memory configuration M.

An optimal configuration should deallocate abstract values during fixpoint computation
as soon they are no longer needed. The challenge is ensuring that the memory configuration
remains valid even without knowing the number of loop iterations for repeat instructions.

3 Declarative specification of optimal memory configuration Mgp¢

This section provides a declarative specification of an optimal memory configuration
Mopt(DPOSTopr, ACHK g, DPOSTZOPt, DPREeopt). Section4 presents an efficient algorithm
for computing Mop.

Definition 5 Given a WTO W(V, <, w) of a graph G(V, ), the nesting relation N is a tuple
(V,=n) whereu <y viffu =vorvew)foru,veV. O
Let |[v]<y o {weV|v <N w};thatis, ||v]<, equals the set containing v and the heads
of components in the WTO that contains v. The nesting relation N(V, <y) is a forest; i.e. a
partial order such that for all v € V, (|[v]<y, =N) is a chain, as proven below.

Theorem 1 (V, <y) is a forest.

Proof First, we show that (V, <y) is a partial order. Let x, y, z be vertices in V.

e Reflexivity: x <y x. This is true by the definition of <y.

e Transitivity: x <y y and y <y z implies x <y z. (i) If x = y, x <\ z. (ii) Otherwise, by
definition of <y, y € w(x). Furthermore, (ii-1) if y = z, z € w(x); and hence, x <N 2.
(ii-2) Otherwise, z € w(y), and by definition of HTO, z € w(x).

e Anti-symmetry: x <y y and y <y x implies x = y. Suppose x # y. By definition of <y
and premises, y € w(x) and x € w(y). Then, by definition of HTO, x < y and y < x.
This contradicts that < is a total order.

Next, we show that the partial order is a forest. Suppose there exists v € V such that
(lv1<y, =n) is not a chain. That is, there exists x, y € [[v]<, suchthatx Ay y and y AN x.
Then, by definition of HTO, C(x) NC(y) = @. However, this leads to a contradiction because
v € C(x) and v € C(y). Thus, (|[v]<y, =N) is a chain. O

Example 11 For the WTO W of G in Example 4, Nj is (V, =).

@ Springer



Formal Methods in System Design (2025) 65:133-162 141

1234679

Example 12 For the WTO W of G, in Example 5, No(V, <) is: | | . Note
5 8
that || 5T<y = {5, 4}. O
123 79
Example 13 For the WTO Wj; of G3 in Example 6, N3(V, <) is: 4‘\6 é . Note
|
5
that || 5T<y = {5, 4, 3}, forming a chain 5 <N 4 <y 3. O

3.1 Declarative specification of DPOSTp¢

DPOSTopt[u] = v implies that v is the earliest instruction at which POST[u] can be deallocated
while ensuring that there are no subsequents reads of POST[u«] during fixpoint computation.
We cannot conclude DPOSTp,[#] = v from a dependency u — v as illustrated in the following
example.

Example 14 Consider the FM program P3 from Example 9, whose graph G3(V,—) is in
Fig. 1c. Although there is a dependency 2 - 8, memory configuration with DPOST[2] = 8
is not valid: POST[2] is read by Inst[8], which is executed repeatedly as part of Inst[7];
if DPOST[2] = 8, then POST[2] would be deallocated the first time Inst[8] is executed,
and subsequent executions of Inst[8] will read L as the value of POST[2], which would be
incorrect. O

In general, for a dependency u - v, we must find the head of maximal component that
contains v but not u as the candidate for DPOSTqp[u]. By choosing the head of maximal
component, we remove the possibility of having a larger component whose head’s repeat
instruction can execute Inst[v] after deallocating POST[u]. If there is no component that
contains v but not u#, we simply use v as the candidate. The following Lift operator gives
us the candidate of DPOSTop¢[u] for u - v:

Lift(u,v) = max <y (([[v]<y \ luT<y) U {v) )

|lv]<, gives us v and the heads of components that contain v. Subtracting || ] <, removes the
heads of components that also contain u. We put back v to account for the case when there
is no component containing v but not # and ||v] <, \|[#]<, is empty. Because N(V, <n) is a
forest, || v]<, and | u]<, are chains, and hence, ||v]<, \ ||#]<, is also a chain. Therefore,
maximum is well-defined.

Example 15 Consider the nesting relation N{(V, <y) from Example 11. For all (u, v) € -,
Lift(u,v) = v. Note that there are no components in W. O

Example 16 Consider the nesting relation N (V, <y) from Example 12. Lift(2,8) =
max<, ({8, 7}\{2}) U{8}) = 7. We see that 7 is the head of the maximal component contain-
ing 8 but not 2. Also, Lift (4, 5) = max<y(({5, 4}\{4}) U {5}) = 5. There is no component
that contains 5 but not 4. Similarly, Lift (5, 4) = max<, (({4}\{5,4}) U {4}) = 4. There is
no component that contains 4 but not 5. m|

Example 17 Consider the nesting relation N3(V, <y) from Example 13. Lift(6,3) =
max<, (({3}\{6}) U {3}) = 3. There is no component that contains 3 but not 6. Also,
Lift(5,3) = max<,(({3}\{5,4,3}) U {3})) = 3. There is no component that contains 3
but not 5. O

@ Springer



142 Formal Methods in System Design (2025) 65:133-162

For each instruction u, we now need to find the last instruction from among the candidates
computed using Li £t . Notice that deallocations of POST values are ata postamble of repeat
instructions in Fig.2. Therefore, we cannot use the total order < of a WTO to find the last
instruction: < is the order in which the instruction begins executing, or the order in which
preambles are executed.

Example 18 Let DPOST,,[u] el max<{Lift(u,v) | u > v}, u € V, an incorrect variant of
DPOSTyyy that uses the total order <. Consider the FM program P3 from Example 9, whose
graph G3(V, ) is in Fig. 1c and nesting relation N3(V, <y) is in Example 13. POST[5] has
dependencies 5 >4 and 5 > 3. Lift(5,4) = 4, Lift(5,3) = 3. Now, DPOST,,[5] = 4
because 3 < 4. However, a memory configuration with DPOST[5] = 4 is not valid: Inst[4]
is nested in Inst[3]. Due to the deletion of POST[5] in Inst[4], Inst[3] will read L as
the value of POST[5]. O

To find the order in which the instructions finish executing, or the order in which postam-
bles are executed, we define the relation (V, <), using the total order (V, <) and the nesting
relation (V, <n):

X<YEXNYVOANXAXZY) Q)

In the definition of <, the nesting relation <y takes precedence over <. (V, <) is a total
order.

Theorem 2 (V, <) is a total order.

Proof We prove the properties of a total order. Let x, y, z be vertices in V.

e Connexity: x < y or y < x. This follows from the connexity of the total order <.

e Transitivity: x < y and y < z implies x < z. (i) Suppose x <y y. (i-1) If y <N z, by
transitivity of <y, x <\ z. (ii-2) Otherwise, 7 Ay y and y < z. It cannot be z <N x
because transitivity of <y implies z <\ y, which is a contradiction. Furthermore, it
cannot be z < x because y < z < x and x <y y implies y € w(z) by the definition of
HTO. By connexity of <, x < z. (ii) Otherwise y Ay x and x < y. (ii-1) If y <y z,
7 AN x because, otherwise, transitivity of <y will imply y <y x. By connexity of <, it
iseitherx < zorz < x.If x <z, x <z If z < x, by definition of HTO, z € w(z).

e Anti-symmetry: x < y and y < x implies x = y. (i) If x <y y, it should be y <y x for
y < x to be true. By anti-symmetry of <y, x = y. (ii) Otherwise, y ANy x and x < y.
For y < x to be true, x Ay y and x < y. By anti-symmetry of <, x = y. O

Intuitively, the total order < moves the heads in the WTO to their corresponding closing
parentheses ‘)’. In terms of the execution order and the order in which POST values are
accessed, the total order (V, <) has the following meaning.

Theorem3 Foru,v € V, if Inst[v] reads POST[u], then u < v.

Proof By the definition of the mapping Inst, there must exists v’ € V such that u > v’ and
v/ <N v for Inst[v] to read POST[u]. By the definition of WTO, it is either u < v’ and
v ¢ w(u),or v’ < uand v' € w(u). In both cases, u < v'. Because v’ <y v, and hence
vV <v,u <. m|

Example 19 For G (Fig.1a) and its WTO W), 12345678 9,wehave ] <2 <3 <
4<5<6<7<8<9. Thatis, (V,<)=(V,=).

|

@ Springer



Formal Methods in System Design (2025) 65:133-162 143

Example 20 For G, (Fig. 1b) andits WTOW,,1 2 3 (4 5) 6 (7 8) 9,wehavel <2 <3 <
5<4<6<8<7<9. Note that 4 < 5 while 5 < 4. Postamble of repeat 4 [...] is
executed after Inst[5], while preamble of repeat 4 [...] is executed before Inst[5].
Similarly, 7 < 8 while 8 < 7. O

Example 21 For G3 (Fig. Ic) and its WTO W3, 1 2 (3(4 5) 6) (7 8) 9, wehave 1 <2 <
5<4<6<3<8<7<9. Notethat 3 < 5 while 5 < 3. Postamble of repeat 3 [...]
is executed after Inst[5], while preamble of repeat 3 [ ... ] is executed before Inst[5].

|

We can now define DPOST,p. Given a nesting relation N(V, <n) for the graph G(V, ),
DPOST,py is defined as:
f

DPOSTop [#] = max<{Lift(u,v) |u—>v} ueV (6)

Example 22 Consider the FM program P; from Example 7, whose graph G{(V,—) is in
Fig. 1a and nesting relation N{(V, <) is in Example 11. An optimal memory configuration
Mopt defined by Eq. 6 is:

DPOSTop[1] = 2, DPOSTopt[2] = 3, DPOSTop[3] = 7, DPOSTopt[5] = 3,
DPOSTpt[4] = DPOSTopt[6] = 6, DPOSTqp[8] = 8, DPOSTopt[7] = DPOSTopt[9] = 9.

Lift(u,v) = v forall (u,v) € » and (V, <) = (V, x) for this case. Therefore, only
(V, <) plays arole in determining DPOSTp;. O

Example 23 Consider the FM program P, from Example 8, whose graph G,(V,—) is in
Fig. 1b and nesting relation N, (V, <y) is in Example 12. An optimal memory configuration
Mpt defined by Eq. 6 is:

DPOSTop[1] = 2, DPOSTopt[2] = DPOSTop[3] = DPOSTo[8] = 7, DPOSTopt[4] = 6,

DPOSTp[5] = 4, DPOSTop[6] = 6, DPOSTqp[7] = DPOSTopt[9] = 9.

Successors of u are first lifted to compute DPOSTopi[u]. For example, to compute
DPOSTop[2], 2’s successors, 3 and 8, are lifted to Li £t (2, 3) = 3and Lift (2, 8) = 7. Then,

the maximum (as per the total order <) of the lifted successors is chosen as DPOSTop[u].
Because 3 < 7, DPOSTop[2] = 7. Thus, POST[2] is deleted in Inst[7]. O

Example 24 Consider the FM program P3 from Example 9, whose graph G3(V,—) is in
Fig. 1c and nesting relation N3(V, <y) is in Example 13.
An optimal memory configuration M, defined by Eq. 6 is:

DPOSTope[1] = 2, DPOSTop[2] = DPOSTopt[3] = DPOSTo[8] = 7, DPOSTo[4] = 6,

DPOSTopt[5] = DPOSTopt[6] = 3, DPOSTopt[7] = DPOSTqp[9] = 9.

To compute DPOST[5], 5’s successors, 3 and 4, are lifted to Lift(5,3) = 3 and
Lift(5,4) = 4. Then, the maximum (as per the total order <) of the lifted successors is

chosen as DPOST,p¢[5]. Because 4 < 3, DPOSTq[5] = 3, and POST[5] is deleted in Inst[3]
instead of Inst[4]. m]

Given M (DPOST, ACHK, DPOSTZ, DPRE‘) and a map DPOSTy, we use M 4DPOSTy to
denote the memory configuration (DPOSTy, ACHK, DPOSTZ, DPRE®). Similarly, M 4 ACHK
means (DPOST, ACHKy, DPOSTZ, DPRE?), and so on. For a given FM program P, each map

@ Springer



144 Formal Methods in System Design (2025) 65:133-162

X that constitutes a memory configuration is valid for P iff M4 X is valid for every valid
memory configuration M. Also, X is optimal for P iff M4 X is optimal for an optimal
memory configuration M.

Theorem 4 DPOST,, is valid. That is, given an FM program P and a valid memory configu-
ration M, [[PﬂMéDPOSTgp, = [P]m.

Proof Our approach does not change the iteration order and only changes where the deallo-
cations are performed. Therefore, it is sufficient to show that for all # - v, POST[u] is available
whenever Inst[v] is executed.

Suppose that this is false: there exists an edge u - v that violates it. Let d be DPOSTop[u]
computed by our approach. Then, the execution trace of P has execution of Inst[v] after
the deallocation of POST[u] in Inst[d], with no execution of Inst[u] in between.

Because < is a total order, it is either d < v or v < d. It must be v < d, because
d < vimplies d < v < Lift(u, v), which contradicts the definition of DPOSTo[u]. Then,
by definition of <, itis either v XN d or (d AN v) A (v <X d). In both cases, the only way
Inst[v]canbe executed after Inst[d] is to have another head 2 whose repeat instruction
includes both Inst[d] and Inst[v]. Thatis, whend <y & and v <y h.

By definition of WTO and u — v, it is either u < v, or u <y v. [t must be u < v, because
if u XN v, Instlu] is part of Inst[v], making Inst[u] to be executed before reading
PoOST[u] in Inst[v]. Furthermore, it must be u < &, because if 4 < u, Inst[u]is executed
before Inst[v] in each iteration over C(h). However, that implies & € (|[v]<y\[[#]<y)>
which combined with d < &, contradicts the definition of DPOSTop[u]. Therefore, no such
edge u - v can exist and the theorem is true. O

Theorem 5 DPOST,,; is optimal. That is, given an FM program P, memory footprint of
[P a4 Drost,, is smaller than or equal to that of [P]sm for all valid memory configura-
tion M.

Proof For DPOSTy, to be optimal, deallocation of POST values must be determined at earliest
positions as possible with a valid memory configuration M/ DPOSTy. That is, there should
not exists u, b € V such that if d = DPOSTop[u], b # d, M4 (DPOSTop[u] < b) is valid,
and Inst[b] deletes POST[u] earlier than Inst[d].

Suppose that this is false: such u, b exists. Let d be DPOSTopi[u], computed by our
approach. Then it must be b < d for Inst[b] to be able to delete POST[«] earlier than
Instl[d]. Also, for all u - v, it must be v < b for Inst[v] to be executed before deleting
PosT[u] in Inst[b].

By definition of DPOSTy, v < d for all u > v. Also, by Theorem 3, u < v. Hence,u < d,
making it either u <N d, or (d AN u) A (u < d). If u <N d, by definition of Lift, it
must be u - d. Therefore, it must be d < b, which contradicts that » < d. Alternative, if
(d AN u) A (u < d), there must exist v € V such that u > v and Lift (u, v) = d. To satisfy
v <b,v <nd,and b < d, it must be b <y d. However, this makes the analysis incorrect
because when stabilization check fails for C(d), Inst[v] gets executed again, attempting to
read POST[u] that is already deleted by Inst[b]. Therefore, no such u, b can exist, and the
theorem is true. O

3.2 Declarative specification of ACHK gy
ACHKpi[u] = v implies that v is the earliest instruction at which the assertion check at

u € V¢ can be executed so that the invariant passed to the assertion check function ¢, is the
same as when using Mgg;. Thus, guaranteeing the same check result CK.

@ Springer



Formal Methods in System Design (2025) 65:133-162 145

Because an instruction can be executed multiple times in a loop, we cannot simply execute
the assertion checks right after the instruction, as illustrated by the following example.

Example 25 Consider the FM program Pz from Example 9. Let Vo = {4,9}. A memory
configuration with ACHK[4] = 4 is not valid: Inst[4] is executed repeatedly as part of
Inst[3], and the first value of PRE[4] may not be the final invariant. Consequently, exe-
cuting ¢4 (PRE[4]) in Inst[4] may not give the same result as executing it in Inst[9]
(ACHKg4a:[4] = 9). m]

In general, because we cannot know the number of iterations of the loop in a repeat
instruction, we must wait for the convergence of the maximal component that contains the
assertion check. After the maximal component converges, the FM program never visits the
component again, making PRE values of the elements inside the component final. Only if the
element is not in any component can its assertion check be executed right after its instruction.

Given a nesting relation N(V, <n) for the graph G (V, -), ACHKqp is defined as:

ACHKop[u] = max<|[u]<y u € Ve ©)
Because N(V, <) is a forest, (||u]<y, =<n) is a chain. Hence, max <, is well-defined.

Example 26 Consider the FM program P; from Example 7, whose graph G(V,—) is in
Fig. 1a and nesting relation N1 (V, <n) is in Example 11. ACHKp¢[v] = max<{v} = v for
allveV. O

Example 27 Consider the FM program P, from Example 8, whose graph G,(V,—) is in
Fig. 1b and nesting relation No(V, <y) is in Example 12. Suppose that Vo = {5, 9}.
ACHKopt[5] = max< {5, 4} = 4 and ACHK[9] = max< {9} = 9. O

Example 28 Consider the FM program P; from Example 9, whose graph G3(V,—) is in
Fig. Ic and nesting relation N3(V, <n) is in Example 13. If V¢ = {5, 9}, ACHKop[5] =
max <y {5, 4, 3} = 3 and ACHKpt[9] = max< {9} = 9. Also, if V¢ = {4, 9}, ACHKp[4] =
max< {4, 3} = 3 and ACHKqp[9] = max< {9} =9. m]

Theorem 6 ACHK,,, is valid. That is, given an FM program P and a valid memory configu-
ration M, [[PHMéACHK,,p, = [P]m

Proof Let v = ACHKqp[u]. If v is a head, by definition of ACHKp, C(v) is the largest
component that contains u. Therefore, once C(v) is stabilized, Inst[u] can no longer be
executed, and PRE[u] remains the same. If v is not a head, then v = u. That is, there is
no component that contains u. Therefore, PRE[«] remains the same after the execution of
Inst[u]. In both cases, the value passed to CK[u] are the same as when using ACHKgg;. O

Theorem 7 ACHK,,, is optimal. That is, given an FM program P, memory footprint of
[PIr Ackk,, is smaller than or equal to that of [P]q for all valid memory configura-
tion M.

Proof Because PRE value is deleted right after its corresponding assertions are checked, it is
sufficient to show that assertion checks are placed at the earliest positions with ACHK .
Let v = ACHKqpt[u]. By definition of ACHKpt, # <N v. For some b to perform assertion
checks of u earlier than v, it must satisfy b <y v. However, because one cannot know
in advance when a component of v would stabilize and when PRE[u«] would converge, the
assertion checks of u cannot be performed in Inst[b]. Therefore, our approach puts the
assertion checks at the earliest positions, and it leads to the minimum memory footprint. O

@ Springer



146 Formal Methods in System Design (2025) 65:133-162
3.3 Declarative specification of DPOSTlopt

v E DPOST[[u] implies that POST[«] can be deallocated at v because it is recomputed and
overwritten in the loop of a repeat instruction before a subsequent use of POST[u].
DPOST' optlu] must be a subset of || ] < : only the instructions of the heads of components
that contain v recompute POST[u#]. We can further rule out the instruction of the heads of
components that contain DPOSTopt[u], because Inst[DPOSTqp[u]] deletes POST[u]. We add

back DPOSTpt[u] to DrosT! opt When u is contained in DPOSTop[u], because deallocation by
DPOST,p happens after the deallocation by DPOSTZOPt.
Given a nesting relation N(V, <y) for the graph G(V, -), DPOSTZOP[ is defined as:

def

DPOST opelue] 2 (L] \ [d 1<) U (e <n d 2 {d}s0) ueV 8)

where d = DPOSTp[u] as defined in Eq.6, and (b % x ¢ y) is the ternary conditional choice
operator.

Example 29 Consider the FM program P; from Example 7, whose graph G{(V,—) is in
Fig. 1a, nesting relation N; (V, <\) is in Example 11, and DPOST,y is in Example 22. There

are no repeat in this F M program, and DPOSTZOPt[u] ={u}forallu € V. O

Example 30 Consider the FM program P, from Example 8, whose graph G,(V,—) is in
Fig. 1b, nesting relation N> (V, <) is in Example 12, and DPOST,y is in Example 23.

DPOST opi[1] = {1}, DPOST gpi[2] = {2}, DPOST' opi[3] = {3},
DPOST o [4] = {4}, DPOST u[5] = {4, 5}, DPOST oi[6] = {6},
DPOST o [7] = {7}, DPOST' o[8] = {7, 8}, DPOST" 5 [9] = {9}.
For 7, DPOSTo[7] = 9. Because 7 £n 9, DPOST o[ 7] = [[71<y\[[91<y = {7}. There-
fore, POST[7] is deleted in each iteration of the loop of Inst[7].

While Inst[9] reads POST[7] in the future, the particular values of POST[7] that are
deleted by DPOSTZOPt[7] are not used in Inst[9]. O

Example 31 Consider the FM program P; from Example 9, whose graph G3(V,—) is in
Fig. Ic, nesting relation N3(V, <y) is in Example 13, and DPOST,p is in Example 24.

DPOST' gpi[1] = {1}, DPOST' opu[2] = {2}, DPOST ou[3] = {3},
DPOST' opi[4] = {4}, DPOST opi[5] = (3, 4,5}, DPOST opi[6] = (3, 6},
DPOST ou[7] = {7}, DPOST' ou[8] = {7, 8}, DPOST' ou[9] = {9}.

For 5, DPOSTp[5] = 3. Because 5 <y 3, DPOSTZOPI[S] =[5T<y \ 31y U{3}=1{5,4,3}.
m|

Theorem 8 DPOSTZ(,,” is valid. That is, given an FM program P and a valid memory config-
uration M, [[P]]MéDPOST“,,pt = [P]m.

Proof Again, our approach does not change the iteration order and only changes where the

deallocations are performed. Therefore, it is sufficient to show that for all u - v, POST[«] is
available whenever Inst[v] is executed.

@ Springer



Formal Methods in System Design (2025) 65:133-162 147

Suppose that this is false: there exists an edge u — v that violates it. Let d’ be element
in DPOSTeopt[u] that causes this violation. Then, the execution trace of P has execution of
Inst[v] after the deallocation of POST[u] in Inst[d’], with no execution of Inst[u] in
between. Because POST[u] is deleted inside the loop of Inst[d’], Inst[v] must be nested
in Inst[d’] or be executed after Inst[d’] to be affected. That is, it must be either v <N d’
or d’ < v. Also, because of how DPOSTeopt[u] is computed, u <N d’'.

First consider the case v <y d’. By definition of WTO and u — v, it is either u < v or
u <N v. In either case, Inst[u] gets executed before Inst[v] reads POST[u]. Therefore,
deallocation of POST[u] in Inst[d’] cannot cause the violation.

Alternatively, consider d’ < v and v A\ d’. Because u <N d’, POST[u] is generated in
each iteration over C(d’), and the last iteration does not delete POST[u]. Therefore, POST[u]
will be available when executing Inst[v]. Therefore, such u, d’ does not exists, and the
theorem is true. m]

Theorem 9 DPOSTéopt is optimal. That is, given an FM program P, memory footprint of

[[PHMé Drost’, is smaller than or equal to that of [ P] m for all valid memory configuration
ST op
M.

Proof Because one cannot know when a component would stabilize in advance, the decision
to delete intermediate POST[u] cannot be made earlier than the stabilization check of a
component that contains u. Our approach makes such decisions in all relevant components
that contains u.

Ifu <nd, DPOSTZOP[[u] = [u]<y N [d]|<y- Because POST[u] is deleted in Inst[d], we
do not have to consider components in ||d] <, \ {d}. Alternatively, if u Zn d, DrosT* optlu] =
lluT<y\|ld 1<y Because POST[u] is deleted Inst[d], we do not have to consider components
in [[#]<y\|[|d1<y. Therefore, DpoST opt 18 optimal. o

3.4 Declarative specification of DPREeopt

v € DPRE‘[u] implies that PRE[«] can be deallocated at v because it is recomputed and
overwritten in the loop of a repeat instruction before a subsequent use of PRE[u].

DPREeopt[u] must be a subset of ||u]<,: only the instructions of the heads of components
that contain v recompute PRE[u]. If Inst[u] is a repeat instruction, PRE[u] is required to
perform widening. Therefore, # must not be contained in DPREzopl[u].

Example 32 Consider the FM program Pz from Example 9. Let Vo = {4,9}. A memory
configuration with DPRE[4] = {3, 4} is not valid, because Inst[4] would read L as the
value of POST[4] when performing widening. O

Given a nesting relation N(V, <y) for the graph G(V, -), DPREZOPt is defined as:

DPRE' ope[] = [lul <y \ {u} u e Ve ©)

Example 33 Consider the FM program P; from Example 7, whose graph G(V,-) is in
Fig. 1a and nesting relation N{(V, <y) is in Example 11. DPREZOP[[u] =@forallu e V. O

Example 34 Consider the FM program P, from Example 8, whose graph G,(V,—) is in
Fig. 1b and nesting relation N> (V, <y) is in Example 12. Let V¢ = {5, 9}. DPREZOPt[5] =
{5,4)\{5} = {4} and DPREZOP[[9] = {9}\{9} = ¥. Therefore, PRE[5] is deleted in each loop
iteration of Inst[4]. O

@ Springer



148 Formal Methods in System Design (2025) 65:133-162

Example 35 Consider the FM program P; from Example 9, whose graph G3(V,—) is in
Fig. 1c and nesting relation N3(V, <y) is in Example 13. Let V¢ = {5, 9}. DPREZOPI[S] =
{5,4,3\{5} = {4, 3} and DPREZOP[[9] = {9}\{9} = 0. Therefore, PRE[5] is deleted in each
loop iteration of Inst[4] and Inst[3]. m]

Theorem 10 DPREZO,,, is valid. That is, given an FM program P and a valid memory config-
uration M, [[P]]MéDPREf,,p, = [P]m.
Proof PRE[u]is only used in assertion checks and to perform widening in Inst[u]. Because
u is removed from DPRE![u], the deletion does not affect widening.

For all v € DPRE‘[u], v <N ACHKp[u]. Because PRE[u] is not deleted when C(v) is
stabilized, PRE[u] will be available when performing assertion checks in Inst[ACHKqpe[#]].
Therefore, DPRE? is valid. o

Theorem 11 DPREZUP, is optimal. That is, given an FM program P, memory footprint of
[P] v 4 DPREL is smaller than or equal to that of [ P] m for all valid memory configuration

Proof Because one cannot know when a component would stabilize in advance, the decision
to delete intermediate PRE[u«] cannot be made earlier than the stabilization check of a com-
ponent that contains u. Our approach makes such decisions in all components that contains
u. Therefore, DPRE" opt 18 optimal.

O

Theorem 12 The memory configuration M ;,(DPOST,p;, ACHK 5y, DPOSTZUP,, DPREZUP,) is
optimal.

Proof Theorems 4 and 5 prove that DPOST,p, is valid and optimal, respectively. Theorems 6
and 7 prove that ACHKqyy is valid and optimal, respectively. Theorems 8 and 9 prove that

DposT! opt 18 valid and optimal, respectively. Finally, Theorems 10 and 11 prove that DPRE" opt

is valid and optimal, respectively. Therefore, M opt(DPOSTpt, ACHK o, DrosT opts DPRE* opt)
is optimal. o

4 Efficient algorithm to compute Mt

Algorithm GenerateFMProgram (Algorithm 1) is an almost-linear time algorithm for
computing an FM program P and optimal memory configuration My for a given directed
graph G(V, —). Algorithm 1 adapts the bottom-up WTO construction algorithm presented
in Kim et al. [10]. In particular, Algorithm 1 applies the genProg rules (Eq. 3) to generate
the FM program from a WTO. Line 33 generates exec instructions for non-heads. Line
40 generates repeat instructions for heads, with their bodies ([ ]) generated on Line 36.
Finally, instructions are merged on Line 49 to construct the final output P.

Algorithm GenerateFMProgram utilizes a disjoint-set data structure. Operation
rep(v) returns the representative of the set that contains v. In Line 6, the sets are ini-
tialized to be rep(v) = v for all v € V. Operation merge (v, h) on Line 44 merges the sets
containing v and %, and assigns / to be the representative for the combined set.

lcap(u, v) is the lowest common ancestor of u, v in the depth-first forest D [19]. Cross
and forward edges are initially removed from - on Line 8, making the graph (V, > U »3)

@ Springer



Formal Methods in System Design (2025) 65:133-162 149

Algorithm 1: GenerateFMProgram(G)
1Input: Directed graph G(V, )
Output: FM program pgm, Mopt (DPOSTopt, ACHKopt, prost! opts DPRE? opt)

2 D:=DepthFirstForest(G) 30 def generateFMInstruction (h):
3 >p := back edges in D 31 N, By := findNestedSCCs (h)

4 >cp := cross & forward edges in D 32 if By, = () then

5 >/ =->\->p 33 Inst[h] :=exech

6 for ve Vdo rep(v) :=v;Rv] =0 34 return

7P:=0 35 for v € Ny, in desc. postDFNp, do

8 removeA_‘llCrossF.wdEdges () 36 Inst[h] ;= Inst[h]$ Inst[v]

9 for i € V in descending DFNp do W37 for u s.t. u >’ v do

10 restoreCrossFwdEdges (h)

38 DPOSTopt[u] := v
11 generateFMInstruction (h) * opt[u]

*39 T[u] := rep(u)

12 pgm := connectFMInstructions ()

13 return pgm, Mop; 40 Inst[h]:=repeath [Inst[h]]
+41 for u s.t.u >g h do

14 def removeAllCrossFwdEdges (): 2 DPOSTop[u] := Tlu] := h
op = =

15 for (u,v) € >cr do
16 - ="\ {(u,v)} 43 for v e Nj do
> Lowest common ancestor. 4 merge(v,h);P:=PU{(v,h)}

17 R[lcap(u,v)] :=R[lcap(u,v)]U {(u,v
L p(#. v)] [ o, V)] U{w. v)} 45 def connectFMInstructions ():

18 def restoreCrossFwdEdges (h) : 46 pgm =€ > Empty program.
19 - :=->"U{(u, rep(v)) | (u,v) € R[A]} 47 for v € V in desc. postDFNp do
48 if = v then
20 def findNestedsCCs (h): rep(,”_) v
49 pgm = pgm § Inst[v]
2 Byi={rep(p)| (p. 1) € B) *50 for u s.t. u >’ v do
22 Np =0 > Nested SCCs except h. 51 DPOS'T' ] =
23 W := By \ {h} > Worklist.™ optlit] ==V
*52 T[u] := rep(u)

24 while there exists v € W do

25 W, Ny = WA {v), N U] 53 if v e Ve then

26 fm;‘u S.t.(M)»; l;de {h} W th *54 ACHKOPI[U] = rep(v)

27 if rep(u n U U W then Vi ,_

2 W= WU (rep()) *55 DPRE  opt[v] := |[v, rep(v)Tp= \ {v}
x56 for v € V do

29 return Ny, By, *57 DPOSTzopt[U] = |lv, T[v]]lp=

58 return pgm

reducible. Restoring it on Line 10 when 2 = 1lcap(u, v) restores some reachability while
keeping (V, >’ U —»p) reducible.

Lines indicated by x in Algorithm 1 compute M. Lines 38, 42, and 51 compute
DPOSTgp. Due to the specific order in which the algorithm traverses G, DPOSTop[u] is
overwritten with greater values (as per the total order <) on these lines, making the final
value to be the maximum among the successors. Lift is implicitly applied when restoring
the edges in restoreCrossFwdEdges: edge u - v whose Lift (4, v) = h is replaced
to u »’ h on Line 10.

DPOSTeopt is computed using an auxiliary map T: V — V and arelationP: V x V. At

the end of the algorithm, T[u] will be the maximum element (as per <) in DPOSTZOPI[M].
That is, T[u] = max< (([ul<y\[[d1<y) U (u =n d ? {d} ¢ @), where d = DPOSTop[u].
Once T[u] is computed by lines 39, 42, and 52, the transitive reduction of <y, P, is used to
find all elements of DPOSTzopl[u] on Line 57. P is computed on Line 44. Note that P* =<y

@ Springer



150 Formal Methods in System Design (2025) 65:133-162

Table 1 Relevant steps and values within GenerateFMProgram when applied to graph G3 of Example 36

h=4 h=3
Line 35 Inst[5] Inst[4]§ Inst[6]
Line 39 repeat 4 [exec 5] repeat 3 [repeat 4 [exec 5] §exec 6]
Line 37 DroSTopi[4] = 5 DPOSTopt[4] = 6, DPOSTopt[3] = 4
Line 38 T[4l =4 T[4]=4,T[3] =3
Line 41 DPOSTopi[5] = T[5] = 4 DPOSTopt[6] = T[6] = DPOSTop[S] = T[5] = 3
Line 43 Sets {4}, {5} merged Sets {3}, {4, 5}, {6} merged

and [|x, y]lp= el {v | x P*v A v P*y}. ACHK and DPRE are computed on Lines 54 and 55,
respectively.

Example 36 Consider the graph G 3 (Fig. 1c). Labels of vertices indicate a depth-first number-
ing (DFN) of G3. The graph edges are classified into tree, back, cross, and forward edges using
the corresponding depth-first forest [20]. Cross and forward edges of G3, »>cr = {(2, 8)},
are removed on Line 7. Because 1cap(2, 8) = 2, the removed edge (2, 8) will be restored
in Line 9 when h = 2. Itis restored as (2, 7), because the disjoint set {8} would have already
been merged with {7} on Line 43 when 4 = 7, making rep(8) to be 7 when h = 2.

The for-loop on Line 8 visits nodes in V' in a descending DEN: from 9 to 1. Calling
generateFMInstruction (k) on Line 10 generates Inst[A], an FM instruction for 4.
When h = 9, because the SCC whose entry is 9 is trivial, exec 9 is generated in Line 32.
When i = 3, the SCC whose entry is 3 is non-trivial, with the entries of its nested SCCs,
N = {4, 6}. These entries are visited in a topological order (descending postDFN), 4, 6,
and their instructions are connected on Line 35 to generate repeat 3 [Inst[4]$Inst[6]]
on Line 39. Visiting the nodes in a descending DFN guarantees the instruction of nested SCCs
to be present, and removing the cross and forward edges ensures each SCC to have a single
entry. Table 1 shows some relevant steps and values within generateFMInstruction.

Finally, calling connectFMInstructions on Line 11 connects the instructions of
entries of outermost SCCs, which is detected by the boolean expression rep(v) = v, in a
topological order (descending postDFN) to generate the final FM program. For the given
example, it visits the nodes in the order of 1, 2, 3, 7, and 9, correctly generating the FM
program on Line 48.

Due to 2—'3 and 27, DPOST,p[2] is set to 3 and then to 7 on Line 50. Due to 5—>5 4 and
55 3, DPOSTop[5] is set to 4 and then to 3 in Line 41. ACHKq[4] is set to 3, as rep(4) =3
in Line 53. T[7] is set to 2 on Line 51, and DPOSTZOP[[7] is set to {2} on Line 56. T[5] is set

to 4 and then to 3 on Line 41, making DPOSTZOP[[S] to be {3, 4, 5}. Because rep(4) = 3,
DPRE' op[4] is set to {3} in Line 54. o

Theorem 13 GenerateFMProgram correctly computes My, defined in Sect. 3.

Proof We show that each map is constructed correctly.

o DPOSTp:: Let v’ be the value of DPOSTop[u] before overwritten in Line 50, 37, or 41.
Descending post DFN ordering corresponds to a topological sorting of the nested SCCs.
Therefore, in Line 50 and 37, v/ < v. Also, because v <y A for all v € Ny, in Line 41,
v/ <N v. In any case, v’ < v. Because rep(v) essentially performs Lift (u, v) when
restoring the edges, the final DPOSTqp¢[u] is the maximum of the lifted successors, and
the map is correctly computed.

@ Springer



Formal Methods in System Design (2025) 65:133-162 151

. DPOSTZOPI: The correctness follows from the correctness of T. Because the
components are constructed bottom-up, rep(u) in Line 51 and Line 38 returns
max< (|| u] <y \|[[DPOSTop[u]1<y). Also, N* ==<y. Thus, DPOSTeopt is correctly com-
puted.

o ACHKp: At the end of the algorithm rep(v) is the head of maximal component that
contains v, or v itself when v is outside of any components. Therefore, ACHKp is
correctly computed.

e DPRE‘,p: Using the same reasoning as in ACHKqyp, and because N* =<y, DPRE opy is
correctly computed.

Theorem 14 Running time of GenerateFMProgram is almost-linear.

Proof The base WTO-construction algorithm is almost-linear time [10]. The starred lines
in Algorithm 1 visit each edge and vertex once. Therefore, time complexity still remains
almost-linear time. m]

5 Implementation

We have implemented our approach in a tool called MIKOS, which extends NASA’s IKOS
[4], a WTO-based abstract-interpreter for C/C++. MIKOS inherits all abstract domains and
widening-narrowing strategies from IKOS. It includes the localized narrowing strategy [9]
that intertwines the increasing and decreasing sequences.

Abstract domains in IKOS. IKOS uses the state-of-the-art implementations of abstract
domains comparable to those used in industrial abstract interpreters such as Astrée [15,21]. In
particular, IKOS implements the interval abstract domain [1] using functional data-structures
based on Patricia Trees [22] as well as a memory-efficient variable packing Difference Bound
Matrix (DBM) relational abstract domain [14].

Interprocedural analysis in IKOS. IKOS implements context-sensitive interprocedural
analysis by means of dynamic inlining, much like the semantic expansion of function bodies
in Astrée [23, Section 5]: at a function call, formal and actual parameters are matched, the
callee is analyzed, and the return value at the call site is updated after the callee returns; a
function pointer is resolved to a set of callees and the results for each call are joined; IKOS
returns top for a callee when a cycle is found in this dynamic call chain. To prevent running
the entire interprocedural analysis again at the assertion checking phase, invariants at exits
of the callees are additionally cached during the fixpoint computation.

Interprocedural extension of MIKOS. Although the description of our iteration strategy
focused on intraprocedural analysis, it can be extended to interprocedural analysis as follows.
Suppose there is a call to function £1 from a basic block contained in component C. Any
checks in this call to £1 must be deferred until we know that the component C has stabilized.
Furthermore, if function £1 calls the function £ 2, then the checks in £2 must also be deferred
until C converges. In general, checks corresponding to a function call f must be deferred
until the maximal component containing the call is stabilized.

When the analysis of callee returns in MIKOS, only PRE values for the deferred checks
remain. They are deallocated when the checks are performed or when the component con-
taining the call is reiterated.

@ Springer



152 Formal Methods in System Design (2025) 65:133-162

Table 2 Measurements for benchmarks that took less than 5s are summarized in the table below
<5s  Time (s) Memory (MB) Time diff (s) Memory diff (MB)
Min Max Avg Min Max Avg Min Max Avg Min Max Avg

T1 0.11 498 058 25 564 42 -0.61  +1.44 +0.08 -037 4490 +12
T2 006 498 107 9 218 46 -0.05 +1.33 +0.14 -043 +172 +18

Time diff shows the runtime of IKOS minus that of MIKOS (positive means speedup in MIKOS). Mem diff
shows the memory footprint of IKOS minus that of MIKOS (positive means memory reduction in MIKOS)

6 Experimental evaluation

The experiments in this section were designed to answer the following questions:

RQO [Accuracy] Does MIKOS (Sect. 5) have the same analysis results as IKOS?

RQ1 [Memory footprint] How does the memory footprint of MIKOS compare to that of
IKOS?

RQ2 [Runtime] How does the runtime of MIKOS compare to that of IKOS?

Experimental setup All experiments were run on Amazon EC2 r5.2xlarge instances (64
GiB memory, 8 vCPUs, 4 physical cores), which use Intel Xeon Platinum 8175 M processors.
Processors have L1, L2, and L3 caches of sizes 1.5 MiB (data: 0.75 MiB, instruction: 0.75
MiB), 24 MiB, and 33 MiB, respectively. Linux kernel version 4.15.0-1051-aws was used,
and gcc 7.4.0 was used to compile both MIKOS and IKOS. Dedicated EC2 instances and
BenchExec [24] were used to improve reliability of the results. Time and space limits were
set to an hour and 64 GB, respectively.

Benchmarks We evaluated MIKOS on two tasks, Tasks T1 and T2, that represent different
client applications of abstract interpretation, each using different benchmarks described in
Sects. 6.1 and 6.2, respectively. In both tasks, we excluded benchmarks that did not complete
in both IKOS and MIKOS given the time and space budget. There were no benchmarks for
which IKOS succeeded but MIKOS failed to complete. Benchmarks for which IKOS took less
than 5 seconds were also excluded. Measurements for benchmarks in Tasks T1 and T2 that
took less than 5 seconds are summarized in Table 2.

Metrics To answer RQ1, we define and use memory reduction ratio (MRR):

def

MRR = Memory footprint of MIKOS/ Memory footprint of IKOS (10)

The smaller the MRR, the greater reduction in peak-memory usage in MIKOS. If MRR is less
than 1, MIKOS has smaller memory footprint than IKOS.
For RQ2, we report the speedup, which is defined as below:

Speedup £ Runtime of IKOS / Runtime of MIKOS €8))

The larger the speedup, the greater reduction in runtime in MIKOS. If speedup is greater than
1, MIKOS is faster than IKOS.

RQO0: Accuracy of MIKOS As a sanity check for our theoretical results, we experimentally
validated Theorem 12 by comparing the analysis results reported by IKOS and MIKOS. MIKOS
used a valid memory configuration, reporting the same analysis results as IKOS. Recall that
Theorem 12 also proves that the fixpoint computation in MIKOS is memory-optimal (i.e., it
results in minimum memory footprint).

@ Springer



Formal Methods in System Design (2025) 65:133-162

— y=x u
~
I e
10! e g
----- y=1/10z e 1
o %
......... y=1/100z PP

10°

Memory footprint of MIKOS (MB)

10° 10° 10*
Memory footprint of IKOS (MB)

(a) Min MRR: 0.895. Max MRR: 0.001.
Geometric means: (i) 0.044 (when xs are
ignored), (ii) 0.041 (when measurements
until timeout/spaceout are used for xs).
29 non-completions in IKOS.

153
/‘/

= — y=u '
23] . : <
S 10 y = 2x -
3 i
D] e y=1/2x /./'/ =
72} . ‘/./'
S 102 R 4
N '/.
(e} /'/
o 10l :
§ 16 /'/-/
£ ;
s 17
& r K

100 #—= ' i

107 10! 107 10°

Runtime of IKOS (seconds)

(b) Min speedup: 0.87x. Max speedup:
1.80x. Geometric mean: 1.29x. Note
that xs are ignored as they space out fast
in IKOS compared to in MIikos where
they complete.

Fig. 3 Task T1. Log-log scatter plots of (a) memory footprint and (b) runtime of IKOS and MIKOS, with an
hour timeout and 64 GB spaceout. Benchmarks that did not complete in IKOS are marked x. All xs completed
in MIKOS. Benchmarks below y = x required less memory or runtime in MIKOS

6.1 Task T1: verifying user-provided assertions

Benchmarks For Task T1, we selected all 2928 benchmarks from DeviceDriversLinux64,
ControlFlow, and Loops categories of SV-COMP 2019 [17]. These categories are well suited
for numerical analysis, and have been used in recent works [10, 25, 26]. From these bench-
marks, we removed 435 benchmarks that timed out in both MIKOs and IKOS, and 1709
benchmarks that took less than 5s in IKOS. That left us with 784 SV-COMP 2019 bench-
marks.

Abstract domain Task T1 used the reduced product of Difference Bound Matrix (DBM)
with variable packing [14] and congruence [18]. This domain is much richer and more
expressive than the interval domain used in task T2.

Task Task T1 consists of using the results of interprocedural fixpoint computation to prove

user-provided assertions in the SV-COMP benchmarks. Each benchmark typically has one
assertion to prove.
RQ1: Memory footprint of MIKOS compared to IKOS Fig.3a shows the measured memory
footprints in a log-log scatter plot. For Task T1, the MRR (Eq. 10) ranged from 0.895 to
0.001. That is, the memory footprint decreased to 0.1% in the best case. For all benchmarks,
MIKOS had smaller memory footprint than IKOS: MRR was less than 1 for all benchmarks,
with all points below the y = x line in Fig. 3a. On average, MIKOS required only 4.1% of the
memory required by IKOS, with an MRR 0.041 as the geometric mean.

As Fig. 3a shows, reduction in memory tended to be greater as the memory footprint in the
baseline IKOS grew. For the top 25% benchmarks with largest memory footprint in IKOS,
the geometric mean of MRRs was 0.009. This trend is further confirmed by the histograms
in Fig. 4. While a similar trend was observed in task T2, the trend was significantly stronger
in task T1. Table 3 lists RQ1 results for specific benchmarks.

RQ2: Runtime of MIKOS compared to IKOS Fig. 3b shows the measured runtime in a log-
log scatter plot. We measured both the speedup (Eq. 11) and the difference in the runtimes.

@ Springer



154 Formal Methods in System Design (2025) 65:133-162

120 120
Max. reduction = 0.052 Max. reduction = 0.014
100 Min. reduction = 0.895 100 Min. reduction = 0.256
Avg. reduction = 0.260 Avg. reduction = 0.053
> 80 > 80
o =
5 60 S 60
L* i o
L o
40 )
20 20
0 - . - 0 - T e
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Memory usage of MIKOS / Memory usage of IKOS Memory usage of MIKOS / Memory usage of IKOS
(a) 0% — 25% (52 MB — 642 MB) (b) 25% — 50% (647 MB — 2676 MB)
120 120
Max. reduction = 0.006 Max. reduction = 0.001
100 Min. reduction = 0.126 100 Min. reduction = 0.096
Avg. reduction = 0.022 Avg. reduction = 0.009
> 80 > 30
5] b5
;_)_ 60 ;‘)_ 60
“ 0 )
20 20
0 - - - N 0 - a —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Memory usage of MIKOS / Memory usage of IKOS Memory usage of MIKOS / Memory usage of IKOS

(c¢) 50% — 75% (2700 MB — 9764 MB) (d) 75% — 100% (9865 MB — 64000 MB)

Fig. 4 Histograms of MRR (Eq. 10) in task T1 for different ranges. a shows the distribution of benchmarks
that used from 52 MB to 642 MB in IKOS. They are the bottom 25% in terms of the memory footprint in
IKOS. The distribution significantly tended toward a smaller MRR in the upper range

For fair comparison, we excluded 29 benchmarks that did not complete in IKOS. This left
us with 755 SV-COMP 2019 benchmarks. Out of these 755 benchmarks, 740 benchmarks
had speedup > 1. The speedup ranged from 0.87 x to 1.80x, with geometric mean of 1.29x.
The difference in runtimes (runtime of IKOS — runtime of MIKOS) ranged from —7.47 s to
1160.04 s, with arithmetic mean of 96.90 s. Table 4 lists RQ2 results for specific benchmarks.

6.2 Task T2: proving absence of buffer overflows

Benchmarks For Task T2, we selected all 1503 programs from the official Arch Linux core
packages that are primarily written in C and whose LLVM bitcodes are obtainable by gllvm
[27]. These include, but are not limited to, coreutils, dhcp, gnupg, inetutils,
iproute, nmap, openssh, vim, etc. From these benchmarks, we removed 76 bench-
marks that timed out and 8 benchmarks that spaced out in both MIKOS and IKOS. Also, 994
benchmarks that took less than 5s in IKOS were removed. That left us with 426 open-source
benchmarks.

Abstract domain Task T2 used the interval abstract domain [1]. Using a richer domain
like DBM caused IKOS and MIKOS to timeout on most benchmarks.

Task Task T2 consists of using the results of interprocedural fixpoint computation to prove
the safety of buffer accesses. In this task, most program points had checks.

@ Springer



Formal Methods in System Design (2025) 65:133-162 155

Table 3 Task T1. A sample of the results for task T1 in Fig. 3a, excluding the non-completed benchmarks in
IKOS

Benchmark IKOS MIKOS

T (s) MF (MB) T (s) MF (MB) MRR
3.16-rc1/205_9a-net-1t18187 1500 45,905 1314 56 0.001
4.2-rc1/43_2a-mmc-rtsx 786.5 26,909 594.8 42 0.002
4.2-rc1/43_2a-video-radeontb 2494 56,752 1930 107 0.002
4.2-rc1/43_2a-net-skge 3523 47,392 3131 98 0.002
4.2-rc1/43_2a-usb-hcd 220.4 17,835 150.8 39 0.002
4.2-rc1/32_Ta-target_core_mod 1316 60,417 1110 2967 0.049
challenges/3.14-alloc-libertas 2094 60,398 1620 626 0.010
4.2-rc1/43_2a-net-libertas 1634 59,902 1307 307 0.005
challenges/3.14-kernel-libertas 2059 59,826 1688 2713 0.045
3.16-rc1/43_2a-sound-cs46xx 3101 58,087 2498 193 0.003

The first 5 rows list benchmarks with the smallest memory reduction ratio (MRR)s. The latter 5 rows list
benchmarks with the largest memory footprints. The smaller the MRR, the greater the reduction in memory
footprint. T: time; MF: memory footprint

Table4 Task T1. A sample of the results for task T1 in Fig. 3b

Benchmark IKOS MIKOS
T (s) MF (MB) T (s) MF (MB) MRR Speedup

challenges/3.8-usb-mainl1 42.63 541 48.92 122 0.225 0.87x
challenges/3.8-usb-mainQ 54.31 3025 61.78 190 0.063 0.88x
challenges/3.8-usb-mainl 42.84 457 47.73 119 0.261 0.90x
3.14/complex-kernel-tm6000 745.4 25,903 413.4 234 0.009 1.80x
4.2-rc1/43_2a-scsi-st 214.6 20,817 119.6 547 0.026 1.79x
3.14/kernel-1t18723ae 111.9 154 62.48 115 0.746 1.79%

The first 3 rows list benchmarks with lowest speedups. The latter 3 rows list benchmarks with highest speedups.
T: time; MF: memory footprint

RQ1: Memory footprint of MIKOS compared to IKOS Fig. 5a shows the measured memory
footprints in a log-log scatter plot. For Task T2, MRR (Eq. 10) ranged from 0.998 to 0.022.
That is, the memory footprint decreased to 2.2% in the best case. For all benchmarks, MIKOS
had smaller memory footprint than IKOS: MRR was less than 1 for all benchmarks, with all
points below the y = x line in Fig. 5a. On average, MIKOS’s memory footprint was less than
half of that of IKOS, with an MRR 0.437 as the geometric mean. Table 5 lists RQ1 results
for specific benchmarks.

RQ2: Runtime of MIKOS compared to IKOS Fig. 5b shows the measured runtime in a log-
log scatter plot. We measured both the speedup (Eq. 11) and the difference in the runtimes.
For fair comparison, we excluded 1 benchmark that did not complete in IKOS. This left
us with 425 open-source benchmarks. Out of these 425 benchmarks, 331 benchmarks had
speedup > 1. The speedup ranged from 0.88 x to 2.83 x, with geometric mean of 1.08x. The
difference in runtimes (runtime of IKOS — runtime of MIKOS) ranged from —409.74 s to
198.39 s, with arithmetic mean of 1.29 s. Table 6 lists RQ2 results for specific benchmarks
(Fig. 6).

@ Springer



156

)

s — y=u

= —— y=1/2z

g 10t - 1/‘1
..... y=1/10z

E y=1/10z 4 g9g

=] y=1/100z p

oy

9 3

£ 101

=

o

2

o

"‘e 2

>10°

o

g ¥

L Wl

2 ;

10? 10° 10*
Memory footprint of IKOS (MB)

(a) Min MRR: 0.998. Max MRR: 0.022.
Geometric means: (i) 0.436 (when xs are
ignored), (ii) 0.437 (when measurements
until timeout/spaceout are used for xs).
1 non-completions in IKOS.

Formal Methods in System Design (2025) 65:133-162

/‘/‘
= — Y=z -
5 s
s 10°] == y=2z o
o o -
SR R y= 1/2.1 /./ -

72} /./‘
o 2
2 10? e L
7 o
5} -~
o 1ol 3
£ 10 /_,-/
E 7
5 R
& r .
0
10 : '
100 10! 10 10°

Runtime of IKOS (seconds)

(b) Min speedup: 0.88x. Max speedup:
2.83x. Geometric mean: 1.08x. Note
that xs are ignored as they space out fast
in IKOS compared to in MIikos where
they complete.

Fig. 5 Task T2. Log-log scatter plots of (a) memory footprint and (b) runtime of IKOS and MIKOS, with an
hour timeout and 64 GB spaceout. Benchmarks that did not complete in IKOS are marked x. All xs completed
in MIKOS. Benchmarks below y = x required less memory or runtime in MIKOS

Table 5 Task T2. A sample of the results for task T2 in Fig. 5a, excluding the non-completed benchmarks in
IKOS

Benchmark IKOS Mikos

T (s) MF (MB) T (s) MF (MB) MRR
Ixsession—0.5.4/1xsession 146.1 5831 81.57 130 0.022
rox—2.11/ROX-Filer 362.3 9569 400.6 329 0.034
tor—0.3.5.8/tor-resolve 58.36 1930 53.10 70 0.036
openssh-8.0p1/ssh-keygen 1212 29,670 1170 1128 0.038
xsane—0.999/xsane 499.8 10,118 467.5 430 0.042
openssh-8.0p1/sftp 3036 45,903 3446 9137 0.199
metacity—3.30.1/metacity 2111 36,324 2363 6329 0.174
links—2.19/links 2512 29,761 2740 3930 0.132
openssh-8.0p1/ssh-keygen 1212 29,670 1170 1128 0.038
links—2.19/xlinks 2523 29,587 2760 3921 0.133

The first 5 rows list benchmarks with the smallest memory reduction ratio (MRR)s. The latter 5 rows list
benchmarks with the largest memory footprints. The smaller the MRR, the greater the reduction in memory
footprint. T: time; MF: memory footprint

7 Related work

Abstract interpretation has a long history of designing time and memory efficient algo-
rithms for specific abstract domains, which exploit variable packing and clustering and sparse
constraints [13, 16, 25, 26, 28-31]. Often these techniques represent a trade-off between pre-
cision and performance of the analysis. Nonetheless, such techniques are orthogonal to the
abstract-domain agnostic approach discussed in this paper. Approaches for improving pre-
cision via sophisticated widening and narrowing strategies [32—34] are also orthogonal to

@ Springer



Formal Methods in System Design (2025) 65:133-162

Table 6 Task T2. A sample of the results for task T2 in Fig. 5b

Benchmark

moserial—3.0.12/moserial
openssh-8.0p1/ssh-pkes11-helper
openssh-8.0p1/sftp
packeth—1.9/packETH
Ixsession—0.5.4/1xsession

xscreensaver—>5.42/braid

IKOS
T (s)

422.3
82.70
3036

188.7
146.1
6.48

MF (MB)

109
674
45,903
153
5831
203

MiIkos

T (s) MF (MB)
585.5 107

94.61 613

3446 9137
83.82 120
81.57 130

4.87 36

MRR

0.980
0.910
0.199
0.782
0.022
0.179

157

Speedup

0.72x
0.87x
0.88x
2.25x%
1.79x
1.33x%

The first 3 rows list benchmarks with lowest speedups. The latter 3 rows list benchmarks with highest speedups.

T: time; MF: memory footprint

20

—
ot

Frequency
o

0-
0.00 0.25 0.50

Memory usage of MIKOS / Memory usage of IKOS

(a) 0% — 25% (44 MB — 184 MB)

Max. reduction = 0.217
Min. reduction = 0.998
Avg. reduction = 0.599

0.75

20

Frequency
— —
= [}

(@2

0
1.00

20 20
Max. reduction = 0.095
Min. reduction = 0.977

15 Avg. reduction = 0.450 15

Frequency

0- - L
0.00 0.25 0.50

Memory usage of MIKOS / Memory usage of IKOS

(c) 50% — 75% (449 MB — 1085 MB)

0.75

Frequency
=

1.00

0.00

Max. reduction = 0.145
Min. reduction = 0.997
Avg. reduction = 0.412

0.25 0.50
Memory usage of MIKOS / Memory usage of IKOS

0.75

1.00

(b) 25% — 50% (187 MB — 436 MB)

0
0.00
Memory usage of MIKOS / Memory usage of IKOS

Max. reduction = 0.022
Min. reduction = 0.966
Avg. reduction = 0.328

0.25 0.50

0.75

1.00

(d) 75% — 100% (1133 MB — 64000 MB)

Fig. 6 Histograms of MRR (Eq. 10) in task T2 for different ranges. a shows the distribution of benchmarks
that used from 44 MB to 184 MB in IKOS. They are the bottom 25% in terms of the memory footprint in
IKOS. The distribution slightly tended toward a smaller MRR in the upper range

@ Springer



158 Formal Methods in System Design (2025) 65:133-162

our memory-efficient iteration strategy. MIKOS inherits the interleaved widening-narrowing
strategy implemented in the baseline IKOS abstract interpreter.

As noted in Sect. 1, Bourdoncle’s approach [3] is used in many industrial and academic
abstract interpreters [4—8]. Thus, improving memory efficiency of WTO-based exploration
is of great applicability to real-world static analysis.

Generic fixpoint-computation approaches for improving running time of abstract inter-
pretation have also been explored [10, 35, 36]. Kim et al. [10] present the notion of weak
partial order (WPO), which generalizes the notion of WTO that is used in this paper. Kim et
al. describe a parallel fixpoint algorithm that exploits maximal parallelism while computing
the same fixpoint as the WTO-based algorithm. Reasoning about correctness of concurrent
algorithms is complex; hence, we decided to investigate an optimal memory management
scheme in the sequential setting first. However, we believe it would be possible to extend our
WTO-based result to one that uses WPO.

The nesting relation described in Sect.3 is closely related to the notion of Loop Nest-
ing Forest [37, 38], as observed in Kim et al. [10]. The almost-linear time algorithm
GenerateFMProgram is an adaptation of LNF construction algorithm by Ramalingam
[37]. The Lift operation in Sect.3 is similar to the outermost-loop-excluding (OLE) oper-
ator introduced by Rastello [39, Section 2.4.4].

Seidl et al. [40] present time and space improvements to a generic fixpoint solver, which
is closest in spirit to the problem discussed in this paper. For improving space efficiency,
their approach recomputes values during fixpoint computation, and does not prove optimal-
ity, unlike our approach. However, the setting discussed in their work is also more generic
compared to ours; we assume a static dependency graph for the equation system.

Abstract interpreters such as Astrée [21] and CodeHawk [7] are implemented in OCaml,
which provides a garbage collector. However, merely using a reference counting garbage
collector will not reduce peak memory usage of fixpoint computation. For instance, the
reference count of PRE[«] can be decreased to zero only after the final check/assert that uses
PRE[u]. If the checks are all conducted at the end of the analysis (as is currently done in prior
tools), then using a reference counting garbage collector will not reduce peak memory usage.
In contrast, our approach lifts the checks as early as possible enabling the analysis to free the
abstract values as early as possible.

Symbolic approaches for applying abstract transformers during fixpoint computation [41—
47] allow the entire loop body to be encoded as a single formula. This might appear to obviate
the need for PRE and POST values for individual basic blocks within the loop; by storing the
PRE value only at the header, such a symbolic approach might appear to reduce the memory
footprint. First, this scenario does not account for the fact that PRE values need to be computed
and stored if basic blocks in the loop have checks. Note that if there are no checks within
the loop body, then our approach would also only store the PRE value at the loop header.
Second, such symbolic approaches only perform intraprocedural analysis [41]; additional
abstract values would need to be stored depending on how function calls are handled in
interprocedural analysis. Third, due to the use of SMT solvers in such symbolic approaches,
the memory footprint might not necessarily reduce, but might increase if one takes into
account the memory used by the SMT solver.

Sparse analysis [48, 49] and database-backed analysis [50] improve the memory cost of
static analysis. For specific classes of static analysis such as the IFDS framework [51], there
have been approaches for improving the time and memory efficiency [52-55].

@ Springer



Formal Methods in System Design (2025) 65:133-162 159

8 Conclusion

This paper presented an approach for memory-efficient abstract interpretation that is agnostic
to the abstract domain used. Our approach is memory-optimal and produces the same result
as Bourdoncle’s approach without sacrificing time efficiency. We extended the notion of
iteration strategy to intelligently deallocate abstract values and perform assertion checks
during fixpoint computation. We provided an almost-linear time algorithm that constructs
this iteration strategy. We implemented our approach in a tool called MIKOS, which extended
the abstract interpreter IKOS. Despite the use of state-of-the-art implementation of abstract
domains, IKOS had a large memory footprint on two analysis tasks. MIKOS was shown to
effectively reduce it. On average MIKOS demonstrated a 24.57 x and 2.29 x reduction in peak-
memory usage compared to IKOS when verifying user-provided assertions in SV-COMP
2019 benchmarks and performing interprocedural buffer-overflow analysis of open-source
programs, respectively.

Data availability The datasets generated during and/or analysed during the current study are available in the
GitHub and Zenodo repository, https://github.com/95616ARG/mikos_sas2020/tree/master/paper_data and
https://doi.org/10.5281/zenodo.5594831. In particular, the dataset for Task T1 is saved in t1.csv and the
dataset for Task T2 is saved in t2 . csv.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: Conference record of the fourth ACM symposium on
principles of programming languages, Los Angeles, California, USA, January 1977, pp 238-252. https:/
doi.org/10.1145/512950.512973

2. Cousot P (2021) Principles of abstract interpretation, 1st edn. MIT Press, Cambridge, MA

3. Bourdoncle F (1993) Efficient chaotic iteration strategies with widenings. In: Formal methods in pro-
gramming and their applications, international conference, Akademgorodok, Novosibirsk, Russia, June
28-July 2, 1993, Proceedings, pp 128—141. https://doi.org/10.1007/BFb0039704

4. Brat G, Navas JA, Shi N, Venet A (2014) IKOS: A framework for static analysis based on abstract
interpretation. In: Software engineering and formal methods - 12th international conference, SEFM 2014,
Grenoble, France, September 1-5, 2014. Proceedings, pp 271-277. https://doi.org/10.1007/978-3-319-
10431-7_20

5. Navas JA (2019) CRAB: CoRnucopia of ABstractions: a language-agnostic library for abstract interpre-
tation. https://github.com/seahorn/crab

6. Facebook: SPARTA. https://github.com/facebookincubator/SPARTA (2020)

Technology K (2020) CodeHawk. https://github.com/kestreltechnology/codehawk

8. Calcagno C, Distefano D (2011) Infer: an automatic program verifier for memory safety of C programs.
In: Bobaru MG, Havelund K, Holzmann GJ, Joshi R (eds) NASA formal methods - third international
symposium, NFM 2011, Pasadena, CA, USA, April 18-20,2011. Proceedings. Lecture Notes in Computer
Science, vol. 6617, pp 459-465. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20398-
5.33

9. Amato G, Scozzari F (2013) Localizing widening and narrowing. In: Static analysis - 20th international
symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings, pp 25—42. https://doi.org/10.
1007/978-3-642-38856-9_4

~

@ Springer


https://github.com/95616ARG/mikos_sas2020/tree/master/paper_data
https://doi.org/10.5281/zenodo.5594831
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20
https://github.com/seahorn/crab
https://github.com/facebookincubator/SPARTA
https://github.com/kestreltechnology/codehawk
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-38856-9_4
https://doi.org/10.1007/978-3-642-38856-9_4

20.

21.

22.
23.

24.

25.

26.

217.
28.

Formal Methods in System Design (2025) 65:133-162

Kim SK, Venet AJ, Thakur AV (2020) Deterministic parallel fixpoint computation. PACMPL 4(POPL),
14-11433. https://doi.org/10.1145/3371082

. Jeannet B, Miné A (2009) Apron: a library of numerical abstract domains for static analysis. In: Bouajjani

A, Maler O (eds) Computer aided verification, 21st international conference, CAV 2009, Grenoble, France,
June 26-July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661-667. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02658-4_52

Bagnara R, Hill PM, Zaffanella E (2008) The parma polyhedra library: toward a complete set of numerical
abstractions for the analysis and verification of hardware and software systems. Sci Comput Program
72(1-2):3-21. https://doi.org/10.1016/j.scic0.2007.08.001

. Singh G, Piischel M, Vechev MT (2017) Fast polyhedra abstract domain. In: Castagna G, Gordon AD

(eds) Proceedings of the 44th ACM SIGPLAN symposium on principles of programming languages,
POPL 2017, Paris, France, January 18-20, pp. 46-59. ACM, New York, NY, USA (2017). https://doi.
org/10.1145/3009837.3009885

Gange G, Navas JA, Schachte P, Sgndergaard H, Stuckey PJ (2016) An abstract domain of uninterpreted
functions. In: Verification, model checking, and abstract interpretation - 17th international conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings, pp. 85-103. https://doi.org/
10.1007/978-3-662-49122-5_4

. Bertrane J, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Rival X (2011) Static analysis by abstract

interpretation of embedded critical software. ACM SIGSOFT Softw Eng Notes 36(1):1-8. https://doi.
org/10.1145/1921532.1921553

Heo K, Oh H, Yang H (2016) Learning a variable-clustering strategy for octagon from labeled data
generated by a static analysis. In: Rival X (ed.) Static analysis - 23rd international symposium, SAS 2016,
Edinburgh, UK, September 8-10, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9837, pp.
237-256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53413-7_12

Beyer D (2019) Automatic verification of C and java programs: SV-COMP 2019. In: Tools and Algorithms
for the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III, pp. 133—155. https://doi.org/10.
1007/978-3-030-17502-3_9

Granger P (1989) Static analysis of arithmetical congruences. Int J Comput Math 30(3—4):165-190.
https://doi.org/10.1080/00207168908803778

Tarjan RE (1979) Applications of path compression on balanced trees. ] ACM 26(4):690-715. https:/
doi.org/10.1145/322154.322161

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT Press,
Cambridge

Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2002) Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. In: Mogensen T, Schmidt DA, Sudborough IH (eds) The essence of computation, complexity,
analysis, transformation. Essays Dedicated to Neil D. Jones [on Occasion of His 60th Birthday]. Lecture
Notes in Computer Science, vol. 2566, pp. 85-108. Springer, Berlin. https://doi.org/10.1007/3-540-
36377-7_5

Okasaki C, Gill A (1998) Fast mergeable integer maps. In: Workshop on ML, pp 77-86

Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2005) The astreé analyzer. In:
Sagiv S (ed) Programming languages and systems, 14th European symposium on programming, ESOP
2005, held as part of the joint European conferences on theory and practice of software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3444, pp. 21-30.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31987-0_3

Beyer D, Lowe S, Wendler P (2019) Reliable benchmarking: requirements and solutions. STTT 21(1):1-
29. https://doi.org/10.1007/s10009-017-0469-y

Singh G, Piischel M, Vechev MT (2018) Fast numerical program analysis with reinforcement learning.
In: Computer aided verification - 30th international conference, CAV 2018, held as part of the federated
logic conference, FloC 2018, Oxford, UK, July 14—17, Proceedings, Part I, pp. 211-229 (2018). https://
doi.org/10.1007/978-3-319-96145-3_12

Singh G, Piischel M, Vechev MT (2018) A practical construction for decomposing numerical abstract
domains. In: Proceedings of the ACM programming language 2(POPL), 55-15528. https://doi.org/10.
1145/3158143

gllvm. https://github.com/SRI-CSL/gllvm (2020)

Singh G, Piischel M, Vechev MT (2015) Making numerical program analysis fast. In: Proceedings of the
36th ACM SIGPLAN conference on programming language design and implementation, Portland, OR,
USA, June 15-17, 2015, pp 303-313. https://doi.org/10.1145/2737924.2738000

@ Springer


https://doi.org/10.1145/3371082
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1145/1921532.1921553
https://doi.org/10.1145/1921532.1921553
https://doi.org/10.1007/978-3-662-53413-7_12
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1145/322154.322161
https://doi.org/10.1145/322154.322161
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1145/3158143
https://doi.org/10.1145/3158143
https://github.com/SRI-CSL/gllvm
https://doi.org/10.1145/2737924.2738000

Formal Methods in System Design (2025) 65:133-162 161

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Gange G, Navas JA, Schachte P, Sgndergaard H, Stuckey PJ (2016) Exploiting sparsity in difference-
bound matrices. In: Rival X (ed) Static analysis - 23rd international symposium, SAS 2016, Edinburgh,
UK, September 8-10, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9837, pp. 189-211.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53413-7_10

Chawdhary A, King A (2017) Compact difference bound matrices. In: Chang BE (ed) Programming
languages and systems - 15th Asian symposium, APLAS 2017, Suzhou, China, November 27-29, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10695, pp. 471-490. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-319-71237-6_23

Halbwachs N, Merchat D, Gonnord L (2006) Some ways to reduce the space dimension in polyhedra
computations. Formal Methods Syst Des 29(1):79-95. https://doi.org/10.1007/s10703-006-0013-2
Halbwachs N, Henry J (2012) When the decreasing sequence fails. In: Static analysis - 19th international
symposium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings, pp 198-213. https://
doi.org/10.1007/978-3-642-33125-1_15

Amato G, Scozzari F, Seidl H, Apinis K, Vojdani V (2016) Efficiently intertwining widening and narrow-
ing. Sci Comput Program 120:1-24. https://doi.org/10.1016/j.scico.2015.12.005

Apinis K, Seidl H, Vojdani V (2016) Enhancing top-down solving with widening and narrowing. In:
Probst CW, Hankin C, Hansen RR (eds) Semantics, logics, and calculi - essays dedicated to hanne riis
nielson and flemming nielson on the occasion of their 60th birthdays. Lecture Notes in Computer Science,
vol. 9560, pp 272-288. Springer, Berlin. https://doi.org/10.1007/978-3-319-27810-0_14

Venet A, Brat GP (2004) Precise and efficient static array bound checking for large embedded C pro-
grams. In: Proceedings of the ACM SIGPLAN 2004 conference on programming language design and
implementation 2004, Washington, DC, USA, June 9-11, 2004, pp. 231-242. https://doi.org/10.1145/
996841.996869

Monniaux D (2005) The parallel implementation of the astrée static analyzer. In: Programming languages
and systems, third Asian symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings,
pp 86-96. https://doi.org/10.1007/11575467_7

Ramalingam G (1999) Identifying loops in almost linear time. ACM Trans Program Lang Syst 21(2):175-
188. https://doi.org/10.1145/316686.316687

Ramalingam G (2002) On loops, dominators, and dominance frontiers. ACM Trans Program Lang Syst
24(5):455-490. https://doi.org/10.1145/570886.570887

Rastello F (2012) On sparse intermediate representations: some structural properties and applications
to just-in-time compilation. University works, Inria Grenoble Rhone-Alpes (December). Habilitation a
diriger des recherches, Ecole normale supérieure de Lyon. https:/hal.inria.fr/hal-00761555

Seidl H, Vogler R (2018) Three improvements to the top-down solver. In: Sabel D, Thiemann P (eds)
Proceedings of the 20th international symposium on principles and practice of declarative programming,
PPDP 2018, Frankfurt Am Main, Germany, September 03-05, pp. 21-12114. ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3236950.3236967

Henry J, Monniaux D, Moy M (2012) PAGAI: A path sensitive static analyser. Electron Notes Theor
Comput Sci 289:15-25. https://doi.org/10.1016/j.entcs.2012.11.003

Reps TW, Sagiv S, Yorsh G (2004) Symbolic implementation of the best transformer. In: Steffen B, Levi
G (eds) Verification, model checking, and abstract interpretation, Sth international conference, VMCAI
2004, Venice, Italy, January 11-13, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2937,
pp. 252-266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24622-0_21

Li Y, Albarghouthi A, Kincaid Z, Gurfinkel A, Chechik M (2014) Symbolic optimization with SMT
solvers. In: Jagannathan S, Sewell P (eds) The 41st annual ACM SIGPLAN-SIGACT symposium on
principles of programming languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pp 607-
618. ACM, New York, NY, USA. https://doi.org/10.1145/2535838.2535857

Reps TW, Thakur AV (2016) Automating abstract interpretation. In: Jobstmann B, Leino KRM (eds)
Verification, model checking, and abstract interpretation - 17th international conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings. Lecture Notes in Computer Science, vol.
9583, pp. 3-40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49122-5_1

Thakur AV, Lal A, Lim J, Reps TW (2015) Posthat and all that: automating abstract interpretation. Electron
Notes Theor Comput Sci 311:15-32. https://doi.org/10.1016/j.entcs.2015.02.003

Thakur AV, Elder M, Reps TW (2012) Bilateral algorithms for symbolic abstraction. In: Miné A, Schmidt
D (eds) Static analysis - 19th international symposium, SAS 2012, Deauville, France, September 11-13,
2012. Proceedings. Lecture Notes in Computer Science, vol 7460, pp 111-128. Springer, Berlin. https://
doi.org/10.1007/978-3-642-33125-1_10

Thakur AV, Reps TW (2012) A method for symbolic computation of abstract operations. In: Madhusudan
P, Seshia SA (eds) Computer aided verification - 24th international conference, CAV 2012, Berkeley,

@ Springer


https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1007/978-3-319-71237-6_23
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/978-3-642-33125-1_15
https://doi.org/10.1007/978-3-642-33125-1_15
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1007/978-3-319-27810-0_14
https://doi.org/10.1145/996841.996869
https://doi.org/10.1145/996841.996869
https://doi.org/10.1007/11575467_7
https://doi.org/10.1145/316686.316687
https://doi.org/10.1145/570886.570887
https://hal.inria.fr/hal-00761555
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1007/978-3-642-33125-1_10

162

48.

49.

50.

51

52.

53.

54.

55.

Formal Methods in System Design (2025) 65:133-162

CA, USA, July 7-13, 2012 Proceedings. Lecture Notes in Computer Science, vol. 7358, pp 174-192.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31424-7_17

Oh H, Heo K, Lee W, Lee W, Yi K (2012) Design and implementation of sparse global analyses for c-like
languages. In: ACM SIGPLAN conference on programming language design and implementation, PLDI
’12, Beijing, China - June 11-16, 2012, pp 229-238. https://doi.org/10.1145/2254064.2254092

Oh H, Heo K, Lee W, Lee W, Park D, Kang J, Yi K (2014) Global sparse analysis framework. ACM Trans
Program Lang Syst 36(3):8—1844. https://doi.org/10.1145/2590811

Weiss C, Rubio-Gonzélez C, Liblit B (2015) Database-backed program analysis for scalable error prop-
agation. In: 37th IEEE/ACM international conference on software engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1, pp 586-597. https://doi.org/10.1109/ICSE.2015.75

Reps TW, Horwitz S, Sagiv M (1995) Precise interprocedural dataflow analysis via graph reachability.
In: Conference record of POPL’95: 22nd ACM SIGPLAN-SIGACT symposium on principles of pro-
gramming languages, San Francisco, California, USA, January 23-25, 1995, pp. 49-61. https://doi.org/
10.1145/199448.199462

Bodden E (2012) Inter-procedural data-flow analysis with IFDS/IDE and soot. In: Bodden E, Hendren
LJ, Lam P, Sherman E (eds.) Proceedings of the ACM SIGPLAN international workshop on state of the
art in java program analysis, SOAP 2012, Beijing, China, June 14, 2012, pp. 3-8. ACM, New York, NY,
USA. https://doi.org/10.1145/2259051.2259052

Naeem NA, Lhotdk O, Rodriguez J (2010) Practical extensions to the IFDS algorithm. In: Gupta R
(ed) Compiler construction, 19th international conference, CC 2010, held as part of the joint European
conferences on theory and practice of software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6011, pp. 124—144. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-11970-5_8

Wang K, Hussain A, Zuo Z, Xu GH, Sani AA (2017) Graspan: A single-machine disk-based graph system
for interprocedural static analyses of large-scale systems code. In: Proceedings of the twenty-second
international conference on architectural support for programming languages and operating systems,
ASPLOS 2017, Xi’an, China, April 8-12, 2017, pp. 389—404. https://doi.org/10.1145/3037697.3037744
Zuo Z, GuR, Jiang X, Wang Z, Huang Y, Wang L, Li X (2019) Bigspa: An efficient interprocedural static
analysis engine in the cloud. In: 2019 IEEE international parallel and distributed processing symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019, pp. 771-780. https://doi.org/10.1109/IPDPS.
2019.00086

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://doi.org/10.1007/978-3-642-31424-7_17
https://doi.org/10.1145/2254064.2254092
https://doi.org/10.1145/2590811
https://doi.org/10.1109/ICSE.2015.75
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1007/978-3-642-11970-5_8
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1109/IPDPS.2019.00086
https://doi.org/10.1109/IPDPS.2019.00086

	Memory-efficient fixpoint computation
	Abstract
	1 Introduction
	2 Fixpoint computation preliminaries
	2.1 Bourdoncle's recursive iteration strategy
	2.2 Memory management during fixpoint computation
	2.3 Problem statement

	3 Declarative specification of optimal memory configuration  blackmathcalM  blackopt 
	3.1 Declarative specification of  blackDpost  blackopt 
	3.2 Declarative specification of  blackAchk  blackopt 
	3.3 Declarative specification of  blackDpostell  blackopt 
	3.4 Declarative specification of  blackDpreell  blackopt 

	4 Efficient algorithm to compute  blackmathcalM  blackopt 
	5 Implementation
	6 Experimental evaluation
	6.1 Task T1: verifying user-provided assertions
	6.2 Task T2: proving absence of buffer overflows

	7 Related work
	8 Conclusion
	References




