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Abstract

We consider the problem of patching a deep neural network: applying a small
change to the network weights in order to produce a desired change in the clas-
sifications made by the network. We motivate this problem using ACAS Xu, a
well-studied neural network intended to act as an aircraft collision-avoidance sys-
tem. Our technique works over infinite patching regions, is based on an SMT for-
mulation of the problem, and has a number of desirable convergence properties.
To make this approach efficient, we introduce a symbolic representation of neu-
ral networks and a generalization of ReLU neural networks (Frozen Networks).
We show that our approach can produce highly effective and generalizing patches
with a very small number of weight changes.

1 Introduction

Recently, deep neural networks (DNNs) [1] have made great strides in solving a variety of problems.
Due to these successes, DNNs have begun to permeate more systems, including safety-critical ones
such as aircraft collision avoidance [2] and self-driving cars [3]. This has led to a growing need for
tools to more deeply analyze and modify such networks beyond the initial training process.

In this work, we consider the problem of patching a neural network after it has been trained: chang-
ing a small number of weights in the network to precisely manipulate the network decision bound-
aries (eg. to fix erroneous or undesired behavior). For example, consider the ACAS Xu neural
network from Julian et al. [2]. This network takes as input a five-dimensional description of the
situation around the plane being controlled (namely: distance and angle to the nearest attacker, its
velocity, and the attacker’s velocity), has six hidden layers with 50 ReLU units each, and produces
five outputs corresponding to possible advisories (strong left, weak left, weak right, strong right,
clear-of-conflict). The network’s behavior is visualized (using the technique from [4]) in Figure 1a,
where we have held all input dimensions constant except for the distance and angle to the nearest
attacker. The ownship is positioned at the center of the circle, while each colored point represents
the advisory that would be produced by the network if the attacker were to be positioned there.

In addition to better understanding the network, this visualization allows us to identify a number of
unexpected behaviors. For example, there is a “stripe” of locations behind the plane where a nearby
attacker would cause the network to suggest a “weak left,” actually turning towards the attacker. The
question addressed in this paper is: how might one effectively and efficiently target and remove such
behaviors? A visualization after applying our proposed solution is displayed in Figure 1b, where the
offending “stripe” has been removed from this portion of the input domain by changing 5 of out of
the 13,000 weights of the network. Furthermore, as we will see, such patches applied to one “slice”
of the input domain tend to generalize well — eg., if the velocities were increased, the stripe would
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(a) Network visualization (b) Patched network visualization
(plane icons removed to better show
decision boundaries)

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Figure 1: Visualizing preconditions for and patching an aircraft collision avoidance network
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Figure 2: Patching deep neural networks

still be removed. This allows a human to “patch” a single two-dimensional slice of the input domain
and then have it generalize automatically to the 5-dimensional input space.

For the rest of this paper, we will restrict our consideration to piecewise-linear (PWL) networks,
which are formally described below and includes networks using 2DCONVOLUTION, FULLYCON-
NECTED, RELU, MAXPOOL, and BATCHNORM layers.

Definition 1. A function f : A → B is referred to as a piecewise-linear function if its input do-
mainA can be partitioned by a finite set of (possibly unbounded) convex polytopes {P1, P2, . . . , Pn}
such that, within any partition Pi ⊆ A, there exists an affine map Fi : Pi → B satisfying
f(x) = Fi(x) for any x ∈ Pi.

2 Patching Deep Neural Networks

We now formalize the problem of network patching and present an approach for patching over
polytopes (Figure 2). As a running example, consider the expository network defined by f below:

f(x) =

[
1 1 1
0 −1 −1

]
RELU

([−1 1
1 0
0 1

] [
x1
x2

]
+

[−0.5
0
0

])
+

[
0
1

]
(1)

This network is visualized in Figure 3a, with classification regions R1 = {y1 ≥ y2} and R2 =
{y2 ≥ y1}. Suppose one wants to modify the network such that its decision boundaries look like
that of Figure 3c. We formalize the desired behavior as a patch specification:

Definition 2. Given a neural network f : A → B, a patch specification is a finite set of pairs of
convex polytopes T = {(X1, Y1), . . . , (Xn, Yn)} where each Xi ⊆ A and Yi ⊆ B.
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Figure 3: Network patching on DNN f in Equation 1.

In our running example, the four polytopes specified in Figure 3b can be used to build the patch
specification: {(P1, R2), (P2, R1), (P3, R1), (P4, R1)}. We can now formalize the concept of a
network patch, i.e. a change to the weights of a network such that it satisfies the patch specification:

Definition 3. Given a neural network f(x; θ) parameterized by weights θ and a patch specification
T = {(X1, Y1), . . . , (Xn, Yn)}, we define a patch to f satisfying T to be a change δ to the weights
θ such that, for all x ∈ Xi, f(x; θ + δ) ∈ Yi holds.

An example of the network patched to satisfy the preceeding specification is presented in Figure 3c.
Note that the polytopes in patch specifications are usually infinite (though bounded), meaning the
quantifications in Definition 3 are over infinite sets.

2.1 Generalizing Patches

A patch specification references only some small subset of the input space; e.g., in the ACAS Xu
network, we patched on a two-dimensional subset of the five-dimensional input space. Thus, when
computing a patch, we would like to avoid over-fitting and would want the patch to correct similar
behavior on other input slices. However, this generalization should not come at the cost of introduc-
ing unexpected behavior in these other slices.

The way we address this issue is by requiring that patches be small, both in the number of weights
that are changed and the magnitude of the weight changes. In particular, Section 5 describes an
approach that changes only a single weight at each iteration and finds the smallest change to this
weight required to satisfy the patch specification. Although this may seem extremely restrictive,
our experimental evaluation in Section 6 shows that patches changing as few as 5 weights are often
enough to correct erroneous behavior in a generalizing fashion.

2.2 Deep Neural Network Patching as Non-Linear SMT

Finding a network patch satisfying a patching specification T (Definition 3) can be seen as a non-
linear instance of the satisfiability modulo theory (SMT) problem [5], which determines whether
there exists a model of a set of formulas. We can translate the patch specification T into the SMT
instance:

∧
(Xi,Yi)∈T ∀x ∈ Xi : f(x; θ+δ) ∈ Yi. Unfortunately, the extreme non-linearity involved

makes solving the constraints infeasible even for state-of-the-art solvers such as Z3 [6]. To make it
feasible, we would like to be able to encode it as a conjunction of linear inequalities (an LP). There
are three sources of non-linearity we must address:

1. The network function f is usually highly-non-linear (eg. ReLU layers introduce exponen-
tially many possible branches).

2. Solving for δ while quantifying over the infinite x ∈ Xi results in non-linearity in the
problem itself.

3. If δ can change weights across multiple layers, the interaction between all weight changes
results in a high-order polynomial problem instead of a linear one (because the linear layers
are applied sequentially, eg. y = w2(w1x+ b1) + b2).

3



To address these problems, Section 3 defines a symbolic neural network representation [7, 4], which
allows us to reason directly about the linear and non-linear behavior of piecewise-linear functions.
Section 4 introduces a new neural network architecture termed Frozen Networks, which generalize
feed-forward RELU networks while enabling finer-grained control over the linear and non-linear
network behaviors. Our first result, Theorem 1, shows that we can write the output of a frozen
network on a particular point with a single weight changed as a linear function of that weight change.
Our next result, Theorem 2, reduces the problem of patching a frozen network on the infinitely-many
x ∈ Xi to the problem of patching a linear function on finitely-many key points. Finally, we combine
these results in Theorem 3 to arrive at an efficient, greedy algorithm which, at each step, makes the
best single-weight change possible.

3 A Symbolic Representation for Deep Neural Networks

Recall that a primary challenge in solving the satisfiability problem was that the network itself
is highly non-linear. In this section, we introduce a primitive which partitions a given polytope
such that the behavior of a given piecewise-linear (PWL) function f is affine on each partition. It
generalizes the primitive in Sotoudeh and Thakur [7] and an extended version is described in more
detail by Sotoudeh and Thakur [4].

Definition 4. Given a function f : Ra → Rb and bounded convex polytope X ⊆ Ra, we de-
fine the symbolic representation of f restricted to X , written f̂�X , to be a set of tuples f̂�X =
{(P1, F1), . . . , (Pn, Fn)}, such that:

1. The set {P1, P2, . . . , Pn} partitions X , except possibly for overlapping boundaries.

2. Given any such (Pi, Fi) pair, the following holds: ∀x ∈ Pi : f(x) = Fi(x).

3. Each Pi is a convex polytope.

4. Each Fi : Pi → Rb is affine.

Efficient algorithms for computing this representation for two-dimensional X and piecewise-
linear f were presented in Sotoudeh and Thakur [4] and implementations are available at
https://github.com/95616ARG/SyReNN. The key idea is to “slice up” X repeatedly by splitting it
according to the faces defining the affine regions of f (eg. the xi = 0 hyperplanes for RELU). Un-
fortunately, computing f̂�X quickly becomes infeasible when X is more than two-dimensional, thus
we will only consider patching specifications that involve two-dimensional regions. However, being
able to patch on two-dimensional regions is important, as two-dimensional regions are close to the
limit of what humans can easily comprehend and define a patching specification over. An example of
this was Figure 1a, where we only considered a single two-dimensional “slice” of the 5-dimensional
input domain (as humans cannot effectively visualize 5-dimensional spaces). Furthermore, using
our technique, one can patch multiple (finitely many) two-dimensional regions simultaneously. Fi-
nally, we will show in Section 6 that patches made to one two-dimensional region tend to generalize
well to (i.e. fix similar behaviors in) nearby regions of the input space.

4 Frozen Networks

We now propose a new neural network architecture termed a Frozen Network, with the key idea of
separating the partitioning imposed by a PWL network on its input space from the affine map applied
within each partition. Frozen networks strictly generalize feed-forward networks with RELU acti-
vations and are loosely inspired by Fiat et al. [8]. They can be extended to networks with arbitrary
PWL activation functions but we focus on RELU for ease of exposition.

Recall that, in a standard feed-forward neural network, the network function f is decomposed into
a series of sequentially-applied layers (vector-valued functions) denoted L1, L2, . . . , Ln. RELU
layers are defined component-wise by:

RELU(x)i =

{
0 xi ≤ 0

xi xi > 0
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In a Frozen Network, four changes are made:

1. The inputs and outputs to each layer are vectors of 2-tuples ((xa1 , x
v
2), . . . , (x

a
d, x

v
d)). In

some scenarios it will be convenient to refer to the vector consisting of just the first-values,
noted xa = (xa1 , . . . , x

a
d) and named the activation vector. Correspondingly, we notate

xv = (xv1, . . . , x
v
d) and name xv the value vector.

2. The input vector x = (x1, . . . , xk) to the entire network is converted to an input vector
where the activation and value vectors are equal, i.e. ((x1, x1), (x2, x2), . . . , (xk, xk)) or,
equivalently, xa = xv = x.

3. The output of the network is taken to be only the values vector xv output by the last layer.
4. RELU layers are replaced by Frozen RELU (FRELU) layers, defined below.

In a frozen network, FULLYCONNECTED or 2DCONVOLUTION layers are associated with two
parameters each, θa and θv . Given an input with activation vector xa and value vector xv to a
FULLYCONNECTED or 2DCONVOLUTION layer, θa and θv are applied to the xa and xv vectors
independently as follows:

FULLYCONNECTEDa(xa, xv; θa, θv)
def
= FULLYCONNECTED(xa; θa)

FULLYCONNECTEDv(xa, xv; θa, θv)
def
= FULLYCONNECTED(xv; θv)

Given an input ((xa1 , x
v
1), . . . , (x

a
d, x

v
d)) to a FRELU layer, we define its ith output tuple to be:

FRELU (((xa1 , x
v
1), . . . , (x

a
d, x

v
d)))i =

{
(0, 0) xai ≤ 0

(xai , x
v
i ) xai > 0

The following properties follow directly from these definitions and are integral to understanding
Frozen RELU networks:

1. A frozen network is piecewise-linear.
2. If xa = xv , then FRELU(xa, xv) = (RELU(xv),RELU(xv)).
3. If xa = xv and θa = θv , then FULLYCONNECTEDθa,θv (x

a, xv) =
(FULLYCONNECTEDθv (x

v), FULLYCONNECTEDθv (x
v)) and similarly for

2DCONVOLUTION.
4. The value of the activation vectors (xa) only ever depends on the value of prior activation

vectors and activation parameters (θa), never prior value vectors (xv) or value parame-
ters (θv).

5. The non-linear behavior of the value vectors (xv) is entirely controlled by the activation
vectors (xa). For example, if all activation vectors xa are strictly positive, then the entire
frozen network is affine (regardless of the value vectors).

The first property allows us to use the symbolic representation f̂�X of the frozen network. The next
two properties show that we can always encode any feed-forward RELU network as a Frozen RELU
network by setting θa = θv = θ for corresponding affine layers (i.e., frozen networks are strictly
more expressive than feed-forward RELU networks). The final two properties ensure that, for a
frozen network f and polytope X:

1. The partitioning of f̂�X (i.e., {P1, . . . , Pn}) is determined entirely by the activation param-
eters θa.

2. Changing the value parameters θv only affects the affine maps of f̂�X (i.e., {F1, . . . , Fn}).

Visually, changes to the activation parameters θa change the position of the white lines in Figure 3a,
while changes to the value parameters θv change the position of the decision boundary within each
white-line delineated region in Figure 3a without changing the positions of the white lines at all.
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These observations lead to the following important result about single-weight, values-patched frozen
networks, proved in Appendix D:
Theorem 1. Given a frozen network f(x; θa, θv) parameterized by activation parameters θa and
value parameters θv , we define the single-weight, values-patched network f(x; θa, θv + δw) which
modifies only a single (non-shared) weight w in the value parameters θv .

Then, for any (Pi, Fi) ∈ ̂f(x; θa, θv)�X and x in Pi, the following holds:

f(x ∈ Pi; θa, θv + δw) = Fi(x) + δw
∂f(x; θa, θv)

∂w

In other words, if we only change a single value parameter weight, then the effect on the output is
simply a linear function of the change to that parameter. Note in particular that neither Fi(x) nor
∂f(x;θa,θv)

∂w have any dependence on δw; they can both be treated as constants for the purposes of
determining δw.

5 Patching Deep Neural Networks on Infinite Inputs

We are now prepared to present the following theorem, proved in Appendix E:
Theorem 2. Given a frozen network f(x; θa, θv) parameterized by activation parameters θa and
value parameters θv , an input polytope X , and output polytope Y :

A values-patched network f(x; θa, θv + δ), modifying only θv , satisfies the property ∀x ∈ X :

f(x; θa, θv + δ) ∈ Y if and only if it satisfies the property ∀(Pi, Fi) ∈ ̂f(x; θa, θv)�X : ∀v ∈
Vert(Pi) : f(v; θ

a, θv + δ) ∈ Y .

Where Vert(P ) gives the vertices of the bounded polytope P . This theorem allows us to translate
the problem of patching over an infinite set of points x ∈ X to that of patching on finitely-many
vertex points Vert(Pi), as long as we keep the activation parameters θa constant. We will refer to
these vertex points as “key points” for this reason.

Combining Theorem 1 with Theorem 2, we are now prepared to formulate the patching problem as
an efficient interval MAX-SMT instance.

First, we translate the given RELU network into an equivalent Frozen Network (which can always
be done as Frozen Networks are strictly more expressive than sequential feed-forward networks).
We can then address problem (1) from Section 2.2 (non-linearity of f ) by restricting ourselves to
only patching the value parameters θv . The value parameters do not impact the partitioning of f̂
(only the affine maps). Thus, this restriction allows us to break the non-linear constraint into a series
of constraints, one for each linear region, and within each the function is linear with respect to the
input. To address problem (2) (quantifying over the infinitely many x ∈ Xi while solving for δ) we
use Theorem 2 to quantify over the finitely-many vertices of the partitions in f̂�Xi

instead of over
the infinitely-many points in each Xi. Theorem 2 ensures that the two are equivalent. To address
problem (3) (non-linear interaction when changing weights across multiple layers in a network)
we can limit δ to only modify a single weight, allowing us to use Theorem 1 to arrive at a linear
formulation of the effect of any given change.

Once all three of these changes are made, the corresponding satisfiability problem can be encoded
as a set of interval constraints, solving for δw in:∧

(Xi,Yi)∈T

∧
(Pj ,Fj)∈f̂�Xi

∧
v∈Vert(Pj)

(
Fi(v) + δw

∂f(v; θa, θv)

∂w

)
∈ Yi (2)

Again, note that both Fi(v) and ∂f(v;θa,θv)
∂w are constant with respect to δw, and that there are finitely

many conjunctions.

5.1 Iterative Greedy Weight-Wise Patching

Equation 2 corresponds to a conjunction of linear inequalities in one variable. Thus, each of the
conjuncts corresponds to an interval on the corresponding patch δw in which that constraint is met.
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Figure 4: Weights changed vs. percent of constraints met. The blue line shows the percent of
constraints met on the input slice that the patch targeted, while the red line shows the percent of
constraints met on a slice at higher velocity.

Table 1: Summarizes the percent of constraints met and time taken per iteration for patching three
specifications. “Patched Slice” is the input domain of interest that the patch spec applies to, while
“Other Slice” shows how patching one slice can generalize to patches for another.

Constraints Met

Patched Slice Other Slice Seconds Per Iteration

Patch Initial Final Initial Final Mean Std. Dev.

Pockets 99.6% 99.994% 99.3% 99.7% 23.6 15.2
Bands 99.6% 99.98% 99.7% 99.8% 15.9 2.3
Symmetry 88.5% 97.0% 88.9% 95.6% 4.7 0.1

We refer to the set of all such intervals for the kth weight as Ik. Finding the optimal patch (i.e.,
the patch that satisfies as many constraints as possible) for that weight now corresponds to finding
an interval M = [M l,Mu] that maximizes the number of intervals in Ik containing it (i.e., solving
the corresponding interval MAX-SMT problem). After sorting, this is solvable in linear time using
the standard “linear sweep” algorithm. We can repeat this process for every weight in a particular
layer (or the entire network if desired), picking the update that will satisfy the maximum number
of constraints. Finally, we can greedily apply this algorithm to update multiple weights, at each
step making the optimal change to a single weight in the network. Thus, this greedy algorithm is
guaranteed to both monotonically increase the number of constraints met as well as terminate in a
finite number of steps. We summarize these facts in the following theorem:
Theorem 3. For any given weight w in the network, the set of constraints corresponding to Equa-
tion 2 can be solved in O(n log n) time (where n is the number of constraints) to find the smallest
(by magnitude) δw which satisfies the maximum number of constraints.

Consequently, by solving Equation 2 for every weight in a network (or layer of a network), we can
find the single-weight patch that satisfies the maximum number of constraints. Furthermore, we can
find the single-weight patch that is smallest in magnitude while satisfying that number of constraints.

6 Experimental Evaluations

In this section, we address the following three research questions: (1) Can an ACAS Xu network
be patched to correct a number of undesired behaviors? (2) How well do patches on a single two-
dimensional subsets of the input space generalize to (i.e. fix the same behavior on) other subsets of
the input space? (3) How well does the greedy MAX-SMT solver described in 2.2 work, both in
terms of efficiency and optimization?

Tests were performed on a dedicated Amazon EC2 c5.metal instance, using Benchexec [9]
to limit the number of CPU cores to 16 and RAM to 16GB. Our code is available at
https://github.com/95616ARG/SyReNN.

We attempted to patch the following three suspicious behaviors of the ACAS Xu network visualized
in Figure 1a using our approach (Section 5.1): (i) the “Pockets” patch specification (Figure 5 in Ap-
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pendix A) attempts to get rid of the “pockets” of strong left/strong right in regions that are otherwise
weak left/weak right; (ii) the “Bands” specification (Figure 6) attempts to get rid of the weak-left
region behind and to the left of the ownship (at the origin); (iii) the “Symmetry” specification (Fig-
ure 7) attempts to lower the decision boundary between strong left/strong right to be symmetrical.
After patching, we plotted the patched network in the same two-dimensional region it was originally
plotted (and then patched) over, as well as another two-dimensional region formed by increasing the
velocities of the ownship and attacking ship by 50 kilometers per hour (to evaluate generalization
to input regions not explicitly patched). Before and after plots are presented in Figures 5—7 in Ap-
pendix A. Finally, we timed the performance on the three evaluations shown above and present it
in Table 1 along with the percent of constraints met at each step in Figure 4.

We find that our proposed approach works very well; by changing only five weights, we were able
to near-perfectly apply most of the patches (eg. notice the disappearance of the “offending” regions
between Figure 5a and Figure 5c). Furthermore, for the most part, the patches appear to generalize
to regions not explicitly considered in the patching process (eg. notice the disappearance of the
out-of-place “strong left” region between Figure 5d and Figure 5e after changing only a single
weight). The efficacy of the greedy MAX-SMT solver is further exemplified by the quantitative
results in Table 1 and Figure 4, which shows that it is very effective at quickly meeting a large
fraction of the desired constraints. However, patching was not, in general, a “silver bullet,” and
sometimes undesired changes were introduced (cf. Figure 7f, which has introduced a small “strong
right” region into what was otherwise “weak left” on the generalized region). Avoiding such issues
is an interesting direction for future work, but for the most part, we believe the results shown here
to be extremely promising for the application of network patching in practice.

7 Related Work

Prior work in network patching [10, 11] focused on image-recognition models under distributional
shift, where the problem is phrased in terms of correctly the network’s behavior on finitely many
input points. The problem we address differs significantly because we know exactly how the user
would like an entire two-dimensional subset of the input space classified (because they can specify
it from the visualization in Figure 1) versus the finitely-many individual points considered by prior
work. To that end, the core challenge addressed by this paper is to formulate and effectively address
the patching problem on entire polytope regions which may have infinitely many points.

Furthermore, our proposed solution differs significantly from that of prior work. Whereas prior
work extended the model to be patched with a decision tree (to predict when the patch should be
applied) and an entirely new model that is used in place of (a portion of) the original one when the
decision tree decides it is necessary. By contrast, we only change a very small number of weights in
the network (5 in our experiments).

Finally, we contrast the network patching problem with that of verification of neural networks [12–
16]. Using our terminology, the latter can be interpreted as checking whether a network satisfies a
particular patch specification. While this is important, in the case where such a system says that
a specification is not met the verification approach gives no recourse except to try and retrain the
system. Network patching picks up where network verification leaves off, by giving the developer a
way to predictably manipulate the network to meet the desired specification.

8 Conclusion

We discussed the problem of network patching, i.e. changing the parameters of a network so that
the network satisfies a given specification. We introduced a symbolic representation that translates
analyses on piecewise-linear networks into analyses on finitely-many affine functions. We then
introduced a generalization of RELU networks that provides fine-grained control over both the non-
linear and linear behavior of a network. We showed how these primitives can be combined with
an efficient interval MAX-SMT solver to efficiently and effectively patch the ACAS Xu neural
network.
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(a) Before patching. (b) After one iteration (weight
change).

(c) After five iterations (weight
changes).

(d) Before patching (generaliza-
tion region).

(e) Generalization after one itera-
tion (weight change) on the patch
region.

(f) Generalization after five it-
erations (weight change) on the
patch region.

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Figure 5: Network patching for the “Pockets” spec (Removing the “pockets” of strong-left and
strong-right).

A Qualitative patching results

Figures 5—7 show visualizations of the networks before and after patching, both on the two-
dimensional region patched over and on another one meant to show generalization of the patch.

B Patching Multiple Weights as Linear and Polynomial MAX-SMT

In our discussion, we limited ourselves to patching a single weight in a Frozen Network and showed
that this corresponds to an interval MAX-SMT problem for which there exists a highly-efficient
algorithm. However, it is possible to formulate analogues to Theorem 1 when more than a single
weight is changed by using a multivariable Taylor expansion.

For standard feed-forward neural networks, the following rules hold:

1. Changing a single weight results in a conjunction of interval constraints.

2. Changing the weights within to a single layer in the network results in a conjunction of
multivariable linear constraints.

3. Changing weights across multiple layers in the network results in a conjunction of multi-
variable polynomial constraints.

Although we only present results here for the first case, we have performed experiments with the
second case (changing multiple weights within a layer). Even using the state-of-the-art Z3 SMT
solver [6], however, it was very slow especially when considering the effectiveness and efficiency of
the single- and few-weight patches demonstrated in this paper.
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(a) Before patching. (b) After one iteration (weight
change).

(c) After five iterations (weight
changes).

(d) Before patching (generaliza-
tion region).

(e) Generalization after one itera-
tion (weight change) on the patch
region.

(f) Generalization after five it-
erations (weight change) on the
patch region.

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Figure 6: Network patching for the “Bands” spec (Removing the band of weak-left behind the
origin).

C Efficiency of Patched Frozen Networks

On first glance, frozen networks appear to double the amount of computation necessary to perform
inference, and indeed, when there is no relation between the activation and value parameters (θa
and θv) this is the case. However, this is not necessarily the case when the parameterizations share
many weight values. As an extreme example, we have already noted that when θa = θv , the
network exactly corresponds to a normal RELU network. As a slightly more complex example, if
only a single weight in the last affine layer before a RELU layer is changed, then the value of the
corresponding node’s output activation and value vector coefficients differ by a constant difference in
the weights multiplied by the corresponding input coefficient, incurring a cost of only one multiply-
accumulate operation. In that way, if only a small number of weights differ between the values and
activation network, the output of the frozen network can be computed by keeping only “diffs” of the
values of the nodes during inference. In Section 6, on two of our patch specifications we patched
the last affine layer before the last RELU layer (so at most one multiply-accumulate operation of
overhead) and in another one we patched the very last affine layer, which is not followed by a RELU
layer, so there was no overhead at all.

D Theorem 1

Theorem 1. Given a frozen network f(x; θa, θv) parameterized by activation parameters θa and
value parameters θv , we define the single-weight, values-patched network f(x; θa, θv + δw) which
modifies only a single (non-shared) weight w in the value parameters θv .

Then, for any (Pi, Fi) ∈ ̂f(x; θa, θv)�X and x in Pi, the following holds:

f(x ∈ Pi; θa, θv + δw) = Fi(x) + δw
∂f(x; θa, θv)

∂w
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(a) Before patching. (b) After one iteration (weight
change).

(c) After five iterations (weight
changes).

(d) Before patching (generaliza-
tion region).

(e) Generalization after one itera-
tion (weight change) on the patch
region.

(f) Generalization after five it-
erations (weight change) on the
patch region.

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Figure 7: Network patching for the “Symmetry” spec (Lowering the main decision boundary be-
tween strong-left and strong-right to become symmetrical).

Proof. As previously noted, if only the value parameters are patched, then linear partitions of the
original network f(x; θa, θv) are still linear partitions of the new network. Thus, the function f(x ∈
Pi; θ

a, θv + δw) can be written as a concatenation of linear functions depending on θv + δw.

By “non-shared”, we mean that the weight w appears at most once in the matrix representation
of at most one of the concatenated functions. Thus, we can think of the matrix representation of
f(x ∈ Pi; θa, θv + δw) as the concatenation of matrices M1 ◦ · · · ◦Mi ◦ · · · ◦Mn ◦ x where δw
appears in at most one coefficient in Mi. Using the associative rule, we can collapse this to AMiB,
where B is a column vector and δw appears at most once in Mi. It can then be shown by the
definition of matrix multiplication that δw appears in at most one of the rows in the column vector
MiB and at most once in each of the rows of the column vector AMiB.

Thus, f(x ∈ Pi; θa, θv + δw) is analytic and all partial derivatives with respect to δw other than the
first are 0. Thus, the first-order Taylor expansion is exact, which is what this theorem claims.

E Theorem 2

Theorem 2. Given a frozen network f(x; θa, θv) parameterized by activation parameters θa and
value parameters θv , an input polytope X , and output polytope Y :

A values-patched network f(x; θa, θv + δ), modifying only θv , satisfies the property ∀x ∈ X :

f(x; θa, θv + δ) ∈ Y if and only if it satisfies the property ∀(Pi, Fi) ∈ ̂f(x; θa, θv)�X : ∀v ∈
Vert(Pi) : f(v; θ

a, θv + δ) ∈ Y .

Proof. The function within each partition is affine, and thus convex. If all of the vertices fall inside
of Y , then by definition of convexity all of the interior points must as well. The reverse direction
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is clear: as we consider bounded polytopes, vertices are interior points so if all interior points fall
inside Y then the vertices must as well.
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