
International Journal on Software Tools for Technology Transfer (2025) 27:239–254
https://doi.org/10.1007/s10009-025-00780-7

GENERAL

Special Issue: SOAP 2024

Interleaving static analysis and LLM prompting with
applications to error specification inference

Patrick J. Chapman1 · Cindy Rubio-González1 · Aditya V. Thakur1

Accepted: 23 January 2025 / Published online: 4 February 2025
© The Author(s) 2025

Abstract
This paper presents a new approach to improve static program analysis using Large Language Models (LLMs). The approach
interleaves calls to the static analyzer and queries to the LLM. The query to the LLM is constructed based on intermediate
results from the static analysis, and subsequent static analysis uses the results from the LLM query. We apply our approach
to the problem of error-specification inference: given systems code written in C, infer the set of values that each function
can return on error. Such error specifications aid in program understanding and can be used to find error-handling bugs.
We implemented our approach by incorporating LLMs into EESI, the state-of-the-art static analysis for error-specification
inference. Compared to EESI, our approach achieves higher recall (from an average of 52.55% to 77.83%) and higher
F1-score (from an average of 0.612 to 0.804) while maintaining precision (from an average of 86.67% to 85.12%) on real-
world benchmarks such as Apache HTTPD and MbedTLS. We also conducted experiments to understand the sources of
imprecision in our LLM-assisted analysis as well as the impact of LLM nondeterminism on the analysis results.

Keywords Static analysis · Large language model · Error handling · Error specifications

1 Introduction

This paper presents a new approach for using Large Lan-
guage Models (LLMs) to improve static program analysis.
LLMs [22, 35] have been shown to demonstrate impressive
reasoning abilities in natural and programming languages
tasks via few-shot [3] and chain-of-thought [38] prompting.
The approach presented in this paper utilizes this reasoning
ability of LLMs when the static analysis is unable to make
progress; the results of the query to the LLM are used for
subsequent analysis. Furthermore, the query (or prompt) to
the LLM incorporates the current results of the static analy-
sis, which enables it to provide more accurate results. In this
way, our approach interleaves calls to the static analyzer and
the LLM, with each utilizing the results of the other.

We apply this novel approach to the problem of error-
specification inference of functions in systems code written
in C, i.e., inferring the set of values returned by each function
upon error (Sect. 2). The C language does not have built-
in exception or error handling; thus, a common idiomatic
practice for error handling is to check the return value of a
function on error, i.e., the return code idiom. These return
values indicate the functions’ error specifications, which can
aid in program understanding, as well as in finding error-
handling bugs. EESI [9] has shown higher effectiveness and
performance at inferring error specifications compared to
prior approaches [1, 10, 17]. Our approach interleaves calls
to the EESI static analyzer and the LLM (Fig. 1).

We evaluated our approach on six real-world C programs,
such as MbedTLS and zlib (Sect. 4). Our approach improves
recall and F1-score over EESI from 52.55% to 77.83% and
0.612 to 0.804, respectively, while maintaining a high pre-
cision of 85.12% compared to 86.67% in EESI. Our eval-
uation demonstrates that by interleaving static analysis and
LLM prompting, we can significantly improve upon the error
specification inference capabilities of just a static analyzer.

The contributions of this paper are as follows:

– We propose a technique for interleaving a static analysis
with LLM prompting.

� P.J. Chapman
pchapman@ucdavis.edu

C. Rubio-González
crubio@ucdavis.edu

A.V. Thakur
avthakur@ucdavis.edu

1 University of California, Davis, 1 Shields Ave., Davis, CA, USA

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-025-00780-7&domain=pdf
mailto:pchapman@ucdavis.edu
mailto:crubio@ucdavis.edu
mailto:avthakur@ucdavis.edu

240 P.J. Chapman et al.

Fig. 1 Our approach infers error specifications by interleaving calls to
the EESI static analyzer and the LLM

– We designed a tool for error specification inference of C
programs using our approach of combining the EESI static
analyzer and LLM prompts.

– We evaluate our approach on 6 real-world C programs
comparing it with prior state-of-the-art EESI. We provide
an ablation study on the individual components of our
approach. In addition, we also evaluate potential sources
of imprecision in our interleaved analysis.

Comparison to previous work An earlier version of this
paper was published at the International Workshop on the
State of the Art in Program Analysis (SOAP) 2024 [5]. In
comparison with our prior work, this paper extends our in-
terleaved analysis to track sources of inference (Sect. 3.3).
We use sources of inference to identify the sources of impre-
cision in our interleaved analysis (Sects. 4.6 and 4.7), which
reveal new key findings related to:

– The correlation between providing incorrect background
knowledge error specifications and inferring error specifi-
cations incorrectly;

– The correlation between background knowledge from the
LLM and incorrect error specification inference;

– The relationship between the number of calls to an LLM
on an inference path and incorrect error specification in-
ference;

– How often the incorrectly inferred error specifications are
related to the ∅ value;

– How nondeterminism from the LLM affects the results of
the analysis.

2 Background and motivating example

This section provides background on error specification in-
ference for C programs, the state-of-the-art for error specifi-
cation inference with focus on 𝐸𝐸𝑆𝐼 , background on LLMs,
and an example that motivates the need for an interleaved
analysis for error specification inference.

2.1 Error specification inference for C programs

The C language does not feature programming constructs for
exception handling. Instead, developers often use the return
code idiom to indicate error. An error specification refers to

the set of values returned by a function upon error. Because it
is not possible to enforce compile-time rules regarding error
code propagation and checking, the return code idiom often
leads to error-handling bugs, e.g., developers may miss or
incorrectly check the error return values of functions.

A few approaches for error specification inference have
been presented [1, 9–11, 17, 40]. In this paper, we consider a
state-of-the-art static program analysis that uses abstract in-
terpretation for error specification inference named EESI [9].

2.2 EESI analysis for error specification
inference

The EESI static analysis takes as input multiple forms of
optional user-supplied initial domain knowledge: (1) initial
error specifications, (2) error codes, (3) success codes, and
(4) error-only functions (those only called in error paths).
With this initial domain knowledge, EESI uses static analysis
to infer new error specifications.

EESI incorporates three intraprocedural analyses and one
interprocedural analysis:

– Function call constraints analysis finds constraints on
function return values that must be met in order to execute
a statement.

– Returned constant value analysis finds the constants that
must be returned if a statement has executed.

– Returned function call analysis finds the call return val-
ues that must be returned if a statement has executed.

– Error specification inference engine facilitates the inter-
procedural analysis used to determine the error specifica-
tion of a function based on a set of rules.

The error specification inference engine comprises five
rules used for error specification inference. These rules rely
of the facts learned from the three intraprocedural analyses
and use propagated facts from the domain knowledge to infer
error specifications:

– Initial specification rule. The analysis abstracts the error
specification 𝛽(𝑓) from the initial specification supplied
as domain knowledge.

– Error code rule. If a function returns an error code con-
stant value 𝑐 from the supplied domain knowledge 𝐸𝐶,
then it is added as an error value.

– Error only function rule. If a function 𝑓 calls some
constant error-only function 𝑓𝑒𝑜 from the supplied domain
knowledge and then some constant 𝑐 is returned, then 𝑐 is
added as an error value.

– Error constant return rule. If a function 𝑓 returns some
constant 𝑐 when a function call to 𝑓 ′ returns an error, then
𝑐 is added as an error value.

– Function call propagation rule. If a function 𝑓 returns
a call to 𝑔 along an error path of 𝑓 ′, then the error values
of 𝑔 are added to 𝑓 . Note that 𝑓 ′ and 𝑔 may be the same
function.

Springer

Interleaving static analysis and LLM prompting with applications to error specification inference 241

Fig. 2 Using EESI and the
LLM to infer error
specifications in MbedTLS

While EESI has demonstrated success in error specifica-
tion inference, it has inherent limitations due to the fact that
incomplete program facts can affect the recall and precision
of error specification inference. EESI provides approxima-
tions that may be insufficient in learning enough program
facts. Furthermore, EESI is unable to reason about third-
party functions, i.e., functions whose definition is not found
within the program under analysis.

2.3 Large language models (LLMs)

LLMs are language models trained on large amounts of data
for tasks such as text generation and language understand-
ing. These models have been developed for both natural lan-
guage [35] and programming languages [32], while some
models are trained for both [22, 29, 36]. One of the key
components of LLMs are the prompts, i.e., the input to the
LLM. There has been considerable research done in recent
years related to the generation of prompts that improve the
performance of LLMs in various tasks [2, 29, 37, 38]. These
approaches include concepts such as chain-of-thought [38],
where LLMs are given question and answer as examples
with the associated chain-of-though reasoning, and self-
consistency [37] prompting, where LLMs are prompted with
the same question multiple times, using the most consistent
answer given.

2.4 A motivating example

This section illustrates our approach of interleaving calls to
the EESI static analyzer and the LLM to infer error specifica-
tions. Consider the function x509_get_attr_type_value

in MbedTLS. EESI alone is unable to infer its error specifi-
cation <0; EESI infers ⊥ as the function error-specification
as shown in Fig. 2.

The LLM alone is also unable to infer the error specifi-
cation. We can construct a prompt to the LLM that includes
the general description of the error specification inference
problem (Common Context in Fig. 2), as well as the source
code of the function (Question in Fig. 2). However, querying
the LLM with just this information is not sufficient to give
us the correct error specification <0. In particular, the LLM
infers that the error condition for mbedtls_asn1_get_tag
is ≠0 from the conditional check. Even when the value of
the error code MBEDTLS_ERR_X509_INV_NAME is included
in the Common Context, the incorrect assumption about the
called function leads the LLM to incorrectly infer that the
return value on the error path is the negative error code added
with any nonzero value, that is, the LLM infers that the error
value could be anything, and the error specification is �,
instead of <0.

However, if we also include intermediate results from
𝐸𝐸𝑆𝐼 in the LLM prompt, then the LLM is able to re-
turn the fact that x509_get_attr_type_value returns a

Springer

242 P.J. Chapman et al.

Fig. 3 Interleaving the static
analyzer EESI and LLM results
in a new chain of correctly
inferred error specifications
compared to EESI for MbedTLS

Fig. 4 Using the LLM to infer
the error specification of a
third-party function called from
Pidgin OTRv4

value <0 on error. In particular, the LLM prompt includes the
error specification of the function mbedtls_asn1_get_tag
that is called from x509_get_attr_type_value (Function
Context in Fig. 2); this error specification is inferred by the
EESI static analyzer.

This example illustrates how our approach provides ben-
efits over purely static analysis or LLM approaches by inter-
leaving calls to the static analyzer and the LLM: the LLM is
used only when the static analyzer is unable to make progress,
and the LLM prompt includes intermediate information
gleaned by the static analyzer. Furthermore, the output of the
LLM is fed back into the EESI static analyzer. For example,
the LLM’s specification for x509_get_attr_type_value
would allow EESI to subsequently find the error specifica-
tion <0 for mbedtls_x509_get_name from analyzing its
implementation:

We depict this inference chain in Fig. 3, where we demon-
strate how leveraging the combination of EESI and the LLM
can lead to entirely new chains of error specifications inferred
in the call graph.

The specifics about the LLM prompt construction, viz,
Common Context, Function Context, and Question, are de-
ferred to Sect. 3.1.

Figure 4 shows another scenario that illustrates the bene-
fits of an interleaved analysis. The function otrng_global_
state_instance_tags_read_from is a third-party func-
tion called in Pidgin OTRv4. Because the source code
of this function is not available, EESI is unable to in-
fer its error specification and, consequently, it might not
be able to infer the specifications of functions that call it.
However, constructing an LLM prompt that includes in-
formation from the user-provided domain knowledge, the
LLM is able to correctly infer the error specification for
otrng_global_state_instance_tags_read_from.

Springer

Interleaving static analysis and LLM prompting with applications to error specification inference 243

3 Approach

We illustrate our approach for interleaving static analysis and
LLMs in Fig. 1. The input is the program source code and
optional domain knowledge, and the output is the function
error specifications inferred by the analysis.

3.1 Building prompts

When interacting with the LLM, we construct a prompt
that consists of the Common Context, Function Context, and
Question, as mentioned in Sect. 2.4.

Common context The prompt Common Context used for
error specification inference consists of a problem descrip-
tion and an explanation of the abstract domain used by the
EESI static analyzer. We provide the explanation of the ab-
stract domain, because we want the LLM to output its learned
error specifications using this domain. Relating to the pro-
gram under analysis, the Common Context also contains any
error codes, success codes, and error-only functions from the
domain knowledge input. We include additional observed id-
iomatic practices related to the return code idiom:

1. Error specification values must be a subset of the returned
values of a function.

2. Unknown error specifications are ⊥.
3. Success values are not part of the error specification.
4. The NULL return value is equal to 0.
5. Error codes from standard library functions are positive

integers.
6. Macros may check return values and return if failing.

We also provide basic chain-of-thought examples that con-
sist of a function definition and its associated error specifi-
cation, with a chain-of-thought explanation. We do so to
demonstrate the task of error specification inference and so
that the LLM generates parse-able output. We do this, in ad-
dition to providing the explanation of the abstract domain,
in order to limit the LLM from generating output that is
unexpected. However, if the LLM output does not follow
the expected format, then the related error specification will
consist of the ⊥ element, i.e., unknown. For example, the
expected output for malloc would be malloc: 0.

Function context This prompt relates to any relevant
function error specifications for the function that is being
queried by the LLM. The Function Context that is gener-
ated depends on the selected LLM query function that will
be explained further when introducing our algorithm, Al-
gorithm 1. In all cases, these error specifications are pro-
vided as few-shot examples to the LLM, with the aim to
generate parse-able output, as well as provide demonstrative

Algorithm 1: InferErrorSpecification(𝑃, 𝐹)
INPUT: Map of program facts 𝑃, set of functions 𝐹 .
OUTPUT: Updated 𝑃 with new error specifications.
1: 𝐶𝐺←CallGraph(𝐹)
2: for all 𝑓 ∈ reverseTopologicalSort(𝐶𝐺) do
3: if isThirdParty(𝑓) then
4: 𝑠𝑝𝑒𝑐←queryLLMThirdParty(𝑃, 𝑓)
5: else
6: 𝑠𝑝𝑒𝑐←runAnalysis(𝑃, 𝑓 ,EESI)
7: if 𝑠𝑝𝑒𝑐 =⊥ then
8: 𝑠𝑝𝑒𝑐←queryLLMAnalysis(𝑃, 𝑓)
9: end if

10: end if
11: 𝑃←updateFacts(𝑃, 𝑓 , 𝑠𝑝𝑒𝑐)
12: end for
13: return 𝑃
14: Function queryLLMAnalysis(𝑃, 𝑓)
15: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛←getSourceCode(𝑓)
16: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡← getCalledErrorSpecs(𝑃, 𝑓)
17: 𝑝𝑟𝑜𝑚𝑝𝑡←buildPrompt(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)
18: 𝑠𝑝𝑒𝑐←parseOutput(queryLLM(𝑝𝑟𝑜𝑚𝑝𝑡))
19: return spec
20: EndFunction
21: Function queryLLMThirdParty(𝑃, 𝑓)
22: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛← 𝑔𝑒𝑡𝑁𝑎𝑚𝑒(𝑓)
23: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡←getErrorSpecs(𝑃)
24: 𝑝𝑟𝑜𝑚𝑝𝑡←buildPrompt(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)
25: 𝑠𝑝𝑒𝑐← parseOutput(queryLLM(𝑝𝑟𝑜𝑚𝑝𝑡))
26: return spec
27: EndFunction

examples to the LLM. These error specifications provide ad-
ditional context that can assist the LLM when it comes to
understanding returned error values. This is especially true
when there are functions that exist in the same library as
demonstrated with Fig. 2.

Question The Question in all constructed prompts asks for
the LLM to return any error specification that it is confident
in using the abstract domain used by EESI.

3.2 Error specification inference

For the task of error specification inference, we present Al-
gorithm 1 to demonstrate how the static analyzer and LLM
are used. Our algorithm takes as input the domain knowledge
as a map of program facts 𝑃 and the set of functions from
the source code 𝐹 . The algorithm returns the updated facts 𝑃
after performing analysis.

The analysis begins by iterating over the functions 𝑓 ∈ 𝐹
bottom-up in the Call Graph (𝐶𝐺) as demonstrated on Line 2.
This ensures that called functions are inferred before their
caller, because called functions provide additional context
for error specification inference. Note that, for brevity, we

Springer

244 P.J. Chapman et al.

do not include in the algorithm that we perform a fixpoint
on the Strongly Connected Components (SCC) in 𝐶𝐺 , as
recursion may exist in the call chains. The algorithm will
attempt to infer an error specification in one of three cases:
(1) queryLLMThirdParty (Line 4), (2) runAnalysis (Line 6),
or (3) queryLLMAnalysis (Line 8).

3.2.1 Third-party function error specifications

For each function, we first check if it is a third-party function
(Line 3). We perform queryLLMThirdParty (Line 4) in that
case. Because the source code definition is not available
for third-party functions, we cannot statically analyze it. As
Function Context for the prompt, we provide the entire set of
error specifications that are in 𝑃 on Line 23. The Question in
this case just simply lists the name of the function of interest
(Line 22). The LLM is then queried, where the output is then
parsed (Line 25) and if any error specification is learned, the
program facts are updated (Line 11).

3.2.2 Error specification analysis

If the function is not third-party, then the EESI static analyzer
will perform its own analysis. EESI will determine if the error
specification of the function is infallible (∅), unknown (⊥),
or any other value (e.g., <0) from runAnalysis on Line 6. If
this result is ⊥ (Line 7), then we query the LLM once for the
function under analysis with queryLLMAnalysis on Line 8.

We only provide the known error specifications of func-
tions called within the function definition (Line 16), un-
like the Function Context provided in queryLLMThirdParty.
We demonstrate an example of this in Fig. 2, where EESI
infers an error specification for mbedtls_asn1_get_tag,
which is provided as Function Context to the LLM, which
results in the correct inference of the error specification for
x509_get_attr_type_value.

Finally, the constructed Question as part of the prompt
consists of the source code of the function being analyzed
(Line 15), and the resulting output from the LLM is then
parsed (Line 18) with any newly inferred error specification
updated in the program facts (Line 11).

3.2.3 Validating the LLM response

We requery the LLM for every generated prompt to limit the
side effects of hallucination. Hallucination refers to when
LLMs make up information to satisfy a prompt, even if
the provided chain-of-thought reasoning is contradictory. We
specifically ask the LLM to ensure that the error specifica-
tions provided match the given chain-of-thought description
from itself. Additionally, we also limit some of the impreci-
sion by identifying two inconsistencies with formal reason-

ing. First, we do not infer error specifications if the resulting
error value from the LLM includes a known success value.
Second, we do not infer an error specification if the LLM
states that the error specification is an improper superset
of the return range of the function. Third, we explicitly re-
prompt the LLM and ask it to remove any success values
from the error specification and any error specifications that
it is not confident in. These particular success values may not
be known as part of the interleaved analysis, but the LLM
may still understand they are success values even if they mis-
report it as part of the error specification. As the program
facts are obtained via an approximation during the analysis
of EESI and that hallucinations are a very general problem
for LLMs, we cannot guarantee that these inconsistencies
are removed entirely, but we can utilize these rules to limit
low-hanging fruit.

3.3 Tracking sources of inference

Error specifications can be inferred from initial domain
knowledge given to 𝐸𝐸𝑆𝐼 , from common and function con-
text provided to the LLM, and/or from specifications inferred
during the interleaved analysis. We refer to all these sources
of inference as background knowledge. In order to better un-
derstand what our analysis leverages during inference, we
track the following information:

– Whether the specification was directly inferred by either
the static analyzer, or the LLM;

– The error specifications (if any) that were used as back-
ground knowledge or context to infer the target specifica-
tion;

– The length of the specification’s inference path, i.e., the
number of functions along the call graph whose own spec-
ifications contributed to inferring the target specification;

– The number of LLM calls made along the specification’s
inference path.

We collect the above information by tracking the back-
ground knowledge functions that contribute to the target
function’s error specification inference along with the values
that the background knowledge contributed to for inference.
For the static analyzer, this means that we track the error
specifications from called functions that contributed to error
specification inference via inference rules (Sect. 2.1). For the
LLM-based inference, we track the entire set of error speci-
fications given as context, and associate this context with the
inferred values given by the LLM. Unlike the static analyzer,
it is infeasible to reason about what background knowledge
error specifications actually contributed to the error specifi-
cation inference. This is because we would have to determine
the minimal subset of knowledge that would lead to the cor-
rect error specification inferred, which there may be multiple
valid subsets.

Springer

Interleaving static analysis and LLM prompting with applications to error specification inference 245

Table 1 Selected benchmarks with their LOC and selected domain
knowledge – initial error specifications, error-only (EO) functions, error
codes, and success codes

Benchmark KLOC Ver. Domain knowledge
Init. specs EO Codes

Error Success

Apache HTTPD 288 2.4.46 14 0 44 1
LittleFS 2 1.7.0 11 0 14 1
MbedTLS 255 2.21.0 21 1 221 1
Netdata 51 1.11.0 43 0 0 0
Pidgin OTRv4 15 4.0.2 34 0 0 0
zlib 18 1.2.11 7 0 6 1

By tracking background knowledge used as sources of
inference for each error specification, we can also track the
inference path length. That is, we track how the inference
proceeds across the call graph, tracking what background
knowledge functions along the call graph can contribute to
error specifications inferred later in the analysis. As we are
tracking if error specifications are inferred from EESI or the
LLM, we can also track the number of LLM calls along an
inference path.

4 Experimental evaluation

For our experimental evaluation, we perform an ablation
study. We propose five research questions with one baseline
to target components of our approach:

RQ0 How well does the static analysis of EESI perform?
This is our baseline.

RQ1 What is the impact of using the LLM to infer third-
party error specifications, i.e., queryLLMThirdParty?

RQ2 What is the impact of using the direct LLM analysis,
i.e., queryLLMAnalysis?

RQ3 What is the impact of interleaving EESI and the LLM?
RQ4 What are the sources of imprecision of the interleaved

analysis?
RQ5 What is the performance cost in using the LLM in the

interleaved analysis?

Our code and data are publicly available at https://github.
com/ucd-plse/eesi-llm.

4.1 Experimental setup

Benchmarks We consider a data set of six benchmark
programs that represent a variety of error-handling patterns
and system types, as listed in Table 1.

Table 2 Total number of functions, functions in G, and third-party
functions in G

Benchmark Total G Third party ∈ G

Apache HTTPD 1210 600 (49.6%) 135 (22.5%)
Little FS 60 60 (100.0%) 9 (15.0%)
MbedTLS 1211 598 (49.4%) 15 (2.5%)
Netdata 720 338 (47.6%) 74 (21.9%)
Pidgin OTRv4 277 277 (100.0%) 200 (72.2%)
zlib 126 126 (100.0%) 10 (7.9%)

Domain knowledge For all approaches, we supply the
same initial domain knowledge as input. Initial error spec-
ifications are identified via one of two strategies. The first
is that we select applicable error specifications from a list
of common and well-known standard library functions. The
second is that we manually inspect a small subset of func-
tions based on the program’s call graph, supplying func-
tions that appear lower in the call graph as initial domain
knowledge. Success and error codes are mined automati-
cally through pattern matching header files for patterns such
as ERR, err, and SUCCESS. Error-only functions (only called
on error paths) are selected via manual inspection. The man-
ual effort involved in finding the above domain knowledge
for all benchmarks took a total of one hour.

Evaluation metrics and ground truth We measure pre-
cision, recall, and F1 (F1-score) – where we only consider
a true positive (TP) to be a learned error specification that
matches the ground truth exactly; for example, ≤0 and <0
are not equivalent and would be considered a false posi-
tive (FP). If the analysis determines an error specification is
unknown ⊥, then that is considered a false negative (FN).
As every function-under-analysis will have an error spec-
ification, even infallible ∅ functions, we do not have true
negatives (TN). For all metrics, we calculate based on a
manually inspected ground-truth G as depicted in Table 2.
For smaller benchmarks, we inspected all functions, but for
larger benchmarks we randomly sampled a subset. We did
so, as manual inspection over all functions is not feasible
due to time constraints, as some functions may consist of
hundreds or thousands of lines. Note, numbers represented
in Table 2 do not count initial error specifications from the
domain knowledge.

Precision, recall, and F1 are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃G

𝑇𝑃G + 𝐹𝑃G
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃G

𝑇𝑃G + 𝐹𝑁G
,

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

100 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
.

Springer

https://github.com/ucd-plse/eesi-llm
https://github.com/ucd-plse/eesi-llm

246 P.J. Chapman et al.

Table 3 Specification counts, precision, recall, and F1-score for EESI

Benchmark <0 >0 0 ≤0 ≥0 ≠0 ∅ Total Precision Recall F1

Apache HTTPD 16 42 16 0 1 27 183 285 94.16% 37.56% 0.537
Little FS 40 0 7 0 0 0 10 57 91.30% 75.00% 0.824
MbedTLS 723 10 48 3 0 1 246 1031 90.64% 84.55% 0.875
Netdata 17 35 108 0 1 1 116 278 64.60% 24.50% 0.355
Pidgin OTRv4 11 4 24 0 0 0 29 68 82.35% 10.33% 0.184
zlib 68 1 14 0 0 0 29 112 97.14% 83.33% 0.895

Implementation details EESI is implemented using the
LLVM infrastructure [18] to analyze bitcode and our LLM
error specification inference uses GPT-4 [22] as the LLM.
Our experiments were run on a 2.10 GHz Xeon Silver 4216
CPU with 384 GB of RAM.

4.2 RQ0: how well does the static analysis of
EESI perform?

For this task, we simply supply the initial domain knowledge
and source code to EESI and receive its inferred error spec-
ifications. The number of inferred error specifications are
represented in Table 3. From these, we can see that the most
common error specification inferred across all benchmarks
is <0. Many standard library functions indicate that they re-
turn a negative error code on failure, which has been adopted
by many other software programs. However, this cannot be
assumed for all functions, as indicated with benchmarks such
as Apache HTTPD, which often can return <0, >0, and ≠0
on error. Additionally, some programs may have a consider-
able number of infallible (∅) functions, e.g., MbedTLS.

EESI’s precision ranges from 64.60% to 97.14% as seen
in Table 3, averaging at 86.67% per benchmark. However,
the recall varies even more depending on the benchmark,
ranging from 10.33% to 83.33%, averaging 52.55%. The
benchmark with the lowest recall, Pidgin OTRv4 (10.33%)
is also notably the benchmark with the highest percentage of
third-party functions at 72.2% as listed in Table 2.

4.3 RQ1: what is the impact of using the LLM to
infer third-party error specifications?

We measure the impact of queryLLMThirdParty by running
it in the first step of our interleaved error specification infer-
ence. We then run the static analysis of EESI through run-
Analysis, however, we do not call queryLLMAnalysis when
EESI infers ⊥.

As we can see demonstrated in Fig. 5, we notice an average
recall of 62.20% (Fig. 5c) and average increase of 29.17%
(Fig. 5a) for inferred error specifications over EESI. Our
precision remained similar to EESI (Fig. 5b). We notice the

largest impact for the benchmark Netdata, which increased
the most by 70.50%. This benchmark was impacted signif-
icantly, as it refers to many well-known libraries such as
pthread. We do not see as much of an increase in Pidgin
OTRv4, as many of the third-party libraries are for niche
purposes, e.g., the GTK library. However, this is not the
case for all library functions; for example, the error spec-
ification inference demonstrated in Fig. 4 occurs through
queryLLMThirdParty.

4.4 RQ2: what is the impact of using the direct
LLM analysis?

To isolate the contributions of queryLLMAnalysis, we skip
queryLLMThirdParty in the workflow. Instead, we proceed
to running the static analysis of EESI, followed by querying
the LLM if the result is ⊥.

The results in Fig. 5 show an average increase of 59.88%
(Fig. 5a) across all benchmarks, with an average recall of
70.26% (Fig. 5c). Our benchmark that saw the largest per-
centage increase was Apache HTTPD at 183.33%, which
contains the second highest percentage of third-party func-
tions (Table 2). In Fig. 2, we can see that the direct LLM
analysis allows the LLM to reason about function bodies,
even while the static analysis of EESI is insufficient.

4.5 RQ3: what is the impact of interleaving EESI
and the LLM?

For our combined approach, we utilize the entire workflow,
calling both queryLLMThirdParty and queryLLMAnalysis.
We see in Table 4, that our combination of prompting strate-
gies is extremely beneficial in applications such as Pidgin
OTRv4, Netdata, and Apache HTTPD. Significantly improv-
ing the recall and F1 over EESI in Table 3. In fact, we see
an increase over the average F1 of EESI by +0.192 (Fig. 5d).
We also see the precision Δ on newly learned error specifica-
tions that were not inferred strictly via static analysis. With
Netdata, we saw 144 new <0 error specifications inferred,
with our overall precision going up for the benchmark. We
make note that even when we do lose some precision, as seen

Springer

Interleaving static analysis and LLM prompting with applications to error specification inference 247

Fig. 5 Average increase,
precision, recall, and F1-score
for EESI, queryLLMThirdParty
(LLM𝑇𝑃), queryLLMAnalysis
(LLM𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠), and out fully
interleaved approach
(Combined). The minimum and
maximum benchmark results are
represented as error bars for
their respective metric

Table 4 Specification counts, precision, recall, and F1-score when interleaving 𝐸𝐸𝑆𝐼 and the LLM

Benchmark <0 >0 0 ≤0 ≥0 ≠0 ∅ Total Increase Precision False positives Precision Δ Recall F1
EESI LLM

Apache HTTPD 46 98 42 2 6 93 534 821 188.07% 85.92% 15 24 75.20% 66.85% 0.752
Little FS 50 0 7 0 0 0 10 67 17.54% 92.86% 4 0 100.0% 92.86% 0.929
MbedTLS 818 15 64 4 0 1 272 1174 15.55% 90.34% 51 5 79.49% 96.68% 0.934
Netdata 161 72 222 2 4 1 234 696 150.36% 70.59% 57 28 75.40% 80.63% 0.753
Pidgin OTRv4 16 4 95 0 4 0 53 172 152.94% 73.68% 16 19 70.71% 40.50% 0.522
zlib 76 1 14 0 0 0 29 120 7.14% 97.35% 3 0 100.0% 89.43% 0.932

with Apache HTTPD, we have an increase of 188.07% and
still significantly improve our F1-score to 0.752.

In Fig. 5, our combination of prompting strategies to
the LLM only improved upon the total number of inferred
error specifications (Fig. 5a), obtaining the highest recall
(Fig. 5c), and F1 (Fig. 5d), while maintaining a similar pre-
cision (Fig. 5b) to the analysis of EESI. We specifically
highlight the advantages that each component has demon-
strated, where queryLLMThirdParty demonstrated great suc-
cess in assisting analyze benchmarks with a significant ma-
jority of third-party functions such as Pidgin OTRv4; where
queryLLMAnalysis has demonstrated great success in ana-

lyzing function bodies directly, inferring error specifications
in scenarios such as their called context.

4.6 RQ4: what are the sources of imprecision of
the interleaved analysis?

As described in Sect. 3.3, we track the background knowl-
edge that contributes to each function’s error specification
inference. The goal of this research question is to investigate
various sources of imprecision from this tracked information:
(1) incorrect background knowledge, (2) imprecision due to

Springer

248 P.J. Chapman et al.

Fig. 6 The percentage of true and false positives inferred by the interleaved analysis in the presence of incorrect background knowledge

the LLM, (3) incorrect inference of ∅ error specifications,
and (4) nondeterminism from the LLM.

(1) How much does incorrect background knowledge
contribute to false positives? As discussed earlier, the
provided background knowledge can contribute to incor-
rectly inferred error specifications. To explore the relation-
ship between false positives and the provision of incorrect
background knowledge, we measure the percentage of false
positives that had at least one incorrect error specification
given as background knowledge at any stage during the anal-
ysis. Before calculating percentages, we first classify false
positives depending on whether they come from the LLM or
𝐸𝐸𝑆𝐼 and demonstrate these numbers in Table 4. Figure 6a
shows the percentages for each benchmark. We observe in
general a higher percentage of LLM false positives, ranging
from 70.87% for Apache HTTP to 95.55% for Netdata, that
involved incorrect background knowledge. In contrast, the
percentage for 𝐸𝐸𝑆𝐼 false positive ranges from 0% for zlib
and LittleFS to 63.33% for Netdata. (Note that the absence
of a percentage number in the graph means that no false
positives at all were reported for that benchmark, e.g., LLM
category for zlib and LittleFS). We believe that the difference
observed between LLM and 𝐸𝐸𝑆𝐼 false positives is poten-
tially due to the fact that the sources of inference for the LLM
includes either the entire set called function error specifica-
tions (queryLLMAnalysis), or the initial domain knowledge
error specifications (queryLLMThirdParty).

As a reference, we also calculate the percentage of true
positives in the presence of incorrect background knowl-
edge, which is depicted in Fig. 6b. In general, we observe
that a larger percentage of the false positives, compared to
true positives, involved some incorrect background informa-
tion. Nevertheless, the percentage is not consistent across
benchmarks.

We investigate analysis imprecision due to the LLM based
on two aspects: the percentage of incorrect background

Fig. 7 The average percentage of background knowledge that was
incorrect for false positives

knowledge due to the LLM, and the number of calls made to
the LLM during specification inference.

(2a) What percentage of incorrect background knowl-
edge is due to the LLM? First, we calculate the average
percentage of incorrect background knowledge for the false
positives in each benchmark, as shown in Fig. 7. Second, as
illustrated in Fig. 8, we calculate the percentage of this incor-
rect context that was inferred directly by the LLM. As a re-
minder, we do not infer false positives from the LLM for zlib
and LittleFS. We see that for false positives, at least half of the
total background knowledge used for inference is also incor-
rect ranging from 50.98% for Pidgin OTRv4 and 79.18% for
Netdata. From both of these figures we cannot. However, the
percentage of this incorrect background being from the LLM
is much smaller and more varied across benchmarks. For ex-
ample, MbedTLS has only 3.5% of the incorrect background
knowledge coming from LLMs while Apache HTTPD has
35.57%. From these results it is hard to determine how much
of the overall incorrect background knowledge coming from
the LLM correlates with imprecision.

Springer

Interleaving static analysis and LLM prompting with applications to error specification inference 249

Fig. 8 The percentage of incorrect background knowledge for false
positives that was inferred by the LLM

(2b) Is there a relationship between the number of LLM
calls on an inference path, the total path length, and
false positives? So far, we have considered when the
LLM is used directly to infer an specification when its back-
ground knowledge comes the LLM. Here we consider how
much an error specification inferred by the LLM affects the
overall inference path of other error specifications. For this,
we measure the average number of LLM calls along an infer-
ence path for true positive (Fig. 9a) and false positive (Fig. 9b)
error specifications. We notice that while the false positives
have a higher average of LLM calls along an inference path
when compared to the true positives in benchmarks such as
Apache HTTPD, it also has extreme outliers. So while we
can see a small trend when we try to consider specific exam-
ples of false positives, it can be difficult to find any obvious
signal as to when an error specification may be incorrect.

We also show the average total path length for true pos-
itives (Fig. 10a) and false positives (Fig. 10b), where we
observe a trend similar to that of the number of LLM calls.
False positives also have a larger average in terms of path
length, but a high number of outliers also exists. Finally, we
observe similar results in Fig. 11 when comparing the av-
erage distance from a LLM call for true positives and false
positives. We see that the average distance is relatively close
except for in benchmarks such as zlib and MbedTLS. In gen-
eral, while we notice certain benchmarks demonstrate dis-
tinct differences between false positives and true positives,
these trends do not seem translate to all benchmarks.

(3) How much of the imprecision is related to the ∅ er-
ror specification? An ∅ (empty) error specification de-
notes that a function is infallible, i.e., it cannot fail and there-
fore does not return any error values. Because reasoning
about infallible functions is especially challenging for static
analysis, here we investigate how much of the imprecision is
due to incorrectly inferring ∅ error specifications.

Specifically, our goal is to determine the impact that in-
correct ∅ error specifications have on the precision of the

analysis (see Table 4). For this, we calculate the percent-
age of the false positives where ∅ was incorrectly inferred
(Fig. 12a), and the percentage of false positives where non-∅
error specifications were incorrectly inferred instead of the
∅ specification (Fig. 12b). Note that LittleFS did not have
any false positives related to ∅ and zlib had no false positives
for error specifications inferred by the LLM. For both 𝐸𝐸𝑆𝐼
and the LLM, we observe a noticeable amount of variance
between how often the false positives are related to when our
analysis infers ∅ in Fig. 12a. For example, in MbedTLS the
∅ contributed significantly to the overall percentage of false
positives for both EESI and the LLM. Conversely, it was of
little factor for Netdata. We also notice a significant amount
of variance in Fig. 12b for error specifications where non-∅
was inferred. In Netdata, this contributes to a high percent-
age of the false positives for EESI and low percentage for
the LLM. However, for MbedTLS very few of the EESI false
positives are related but a notable amount are for the LLM.
By combining both of the figures in the number, we also see
that the majority of the false positives between these bench-
marks involves the ∅ error specification in some facet. This
indicates that our interleaved analysis has the most difficulty
in reasoning about the fallibility of a function when com-
pared to other aspects of the analysis such as determining the
correct specific error values.

(4) How much does the nondeterminism of the LLM af-
fect the results? To measure the variance in the analysis
results caused by LLM nondeterminism, we ran our inter-
leaved analysis 5 times each on Apache HTTPD and Lit-
tleFS benchmarks using the GPT-4o-mini [23] model. We
restricted the number of benchmarks and used this LLM to
reduce monetary cost of conducting this experiment.

As seen in Table 5a, the interleaved analysis maintains
a relatively high precision across runs for LittleFS in re-
lation to the Δ precision, but with a reasonable degree of
variance ranging from 84.62% to 100.0%. A similar trend
is observed for third-party precision as indicated in the col-
umn labeled “3rd.” For LittleFS, this precision does have a
negative correlation with both the recall and number of in-
ferred third-party error specifications, though the latter is a
relatively small number ranging from 5 to 8.

In contrast, the variance observed in the precision and
recall across the 5 analysis runs for Apache HTTPD is more
significant, as seen in Table 5b. The Δ precision from the
newly learned error specifications can vary from 51.19% to
70.49%. The third-party precision ranges from 14.48% to
72.31%. The overall recall of the interleaved analysis ranges
from 64.74% to 81.23%, and the newly inferred third-party
function error specifications range from 7 to 65.

The difference in the variance of the interleaved analysis
could be due to the nature of the (ground-truth) error spec-
ifications for the functions in these two benchmarks. Unlike

Springer

250 P.J. Chapman et al.

Fig. 9 The average number of calls to the LLM along an inference path for error specifications that our analysis inferred correctly and incorrectly.
The minimum and maximum values are also displayed for each benchmark

Fig. 10 The average path length for true and false positives error specifications inferred by our interleaved analysis

Fig. 11 The average distance from a call to the LLM in the inference
chain for true positives (TP) versus false positives (FP)

Apache HTTPD, most of the functions in LittleFS have the
same error specification (<0) and it calls relatively few third-
party functions. Further understanding and mitigating such
variance is an interesting future research direction, and will
be critical for deployment of any analysis that incorporates
LLMs.

4.7 RQ5: what is the performance cost in using
the LLM in the interleaved analysis?

To evaluate the performance cost of introducing LLMs into
the interleaved analysis, we measure: (1) execution time of
EESI versus the interleaved analysis, (2) number of requests
to the LLM, (3) number of tokens given as input to the LLM,
and (4) number of tokens given as output from the LLM. For
this evaluation, we use GPT-4o-mini for monetary purposes.
It should be taken into consideration that models’ response
time can vary significantly. The metrics for requests and
tokens are gathered from usage reports from OpenAI [24].

The total number of requests to run the interleaved analy-
sis on all benchmarks is 973. The total number of input and
output tokens is 1,660,285 and 66,533, respectively. The cost
using the 4o mini model is just 29 cents. As seen in Table 6,
the interleaved analysis is much slower compared to EESI,
but it still finishes in under 12 minutes for all benchmarks.
Benchmarks for which the interleaved analysis inferred more
error specifications compared to EESI observed a larger in-

Springer

Interleaving static analysis and LLM prompting with applications to error specification inference 251

Fig. 12 Percentage of false positives that involve the ∅ error specification. Note that LittleFS has no false positives involving the ∅ error specification
and the LLM did not infer any false positives for zlib

Table 5 Repeated interleaved analysis results on Apache HTTPD and
LittleFS. Measured results include total precision percentage, Δ pre-
cision percentage from the baseline static analysis, third-party (3rd)
precision percentage, overall recall percentage, and newly inferred third-
party error specifications

Run Precision Recall Inferred 3rd

Total Δ 3rd

(a) LittleFS
1 89.83% 84.62% 75.00% 98.15% 8
2 91.23% 90.91% 83.33% 94.55% 6
3 89.83% 84.62% 75.00% 98.15% 8
4 91.38% 91.67% 85.71% 96.67% 7
5 92.86% 100.00% 100.00% 92.86% 5

(b) Apache HTTPD
1 71.43% 51.19% 14.58% 73.77% 48
2 78.21% 58.59% 25.00% 65.47% 12
3 79.04% 66.49% 72.31% 81.23% 65
4 83.94% 70.49% 50.00% 65.53% 8
5 82.05% 66.39% 57.14% 64.74% 7

Table 6 Total time to run interleaved analysis versus EESI

Benchmark Time (minutes:seconds)
EESI Interleaved analysis

Apache HTTPD 00:33 11:08
Little FS 00:25 00:25
MbedTLS 00:51 05:25
Netdata 01:09 11:30
Pidgin OTRv4 00:25 02:00
zlib 00:40 01:00

crease in execution time. Using a local models without rate
limits may help mitigate this performance cost.

5 Related work

Error specification inference Acharya and Xie [1] in-
troduce techniques for mining error specifications for APIs
using static traces. APEx [17] uses path-sensitive symbolic
execution to find error-paths on the assumption that error
paths are shorter than normal paths. Several other works
[13, 27, 28, 34] find function error specifications via fault
injection. MLPEx [40] is a machine-learning based approach
that uses path-features to learn whether or not a program path
is an error path. EESI [9] is a static analysis of C programs
for error specification inference that allows the use of domain
knowledge to bootstrap the analysis. Our task improves EESI
by interleaving it with LLM prompting.

Program analysis and LLMs Ahmed and Devanbu [2]
demonstrate that when an LLM is provided semantic in-
formation produced by static analysis, then tasks such as
code summarization can be significantly improved. Li et al.
[20] demonstrate that by carefully crafting questions using
function-level behavior and summaries, LLMs can assist in
removing false positives from a bug finding tool. Li et al.
[21] also introduce a technique for combining static analy-
sis using symbolic execution with LLMs to find Use Before
Initialization (UBI) bugs, demonstrating that the LLM can
be used to extract some program semantics and filter out
false positives caused by the imprecision of the static anal-
ysis. Wen et al. [39] also report success in removing false
positive warnings by using customized questions with do-
main knowledge from the Juliet [15] benchmark. LLMs have
also been recently used to generate program invariants [26],
including generating loop invariants [16] and subsequently
ranking them using zero-shot prompting [4]. In contrast to
all of the above, our work interleaves facts provided by both
a static analysis and an LLM to improve the precision of an
existing static analysis for error specification inference.

Springer

252 P.J. Chapman et al.

Program analysis and machine learning Seldon [8] is
a tool using semisupervised learning through building and
solving a constraint system from information flow constraints
for taint specification inference. InspectJS [12] is an approach
for taint specification inference that uses manual modeling
from CodeQL [14], inferred specifications using an adap-
tation of Seldon, a ranking strategy using embeddings, and
manual user feedback. As discussed previously in relation
to error specification inference, MLPEx [40] uses machine
learning for error specification inference. While these ap-
proaches combine machine learning and traditional program
analysis techniques to improve analysis results, our technique
differs in that we use LLMs, and in that both the static analysis
and LLM-based inference results are interleaved throughout
the entire analysis.

Code LLMs There are many LLMs that are dedicated
to generating and reasoning about programming languages.
Some of these models are general working for both natural
language and programming languages [22, 29, 36]. Whereas
some other models target programming languages specifi-
cally [32]. There has also been considerable work done to-
wards how to effectively guide the model to generate useful
output through prompting. One technique called chain-of-
thought [38] provides examples with chain-of-thought rea-
soning to the models in an attempt to guide the model to
utilize the same reasoning when answering future queries.
There is also the notion of self-consistency [37], which is
the process of querying the model multiple times and taking
the most consistently given answer. While there has been
significant work in trying to improve model performance, a
separate challenge is how to effectively evaluate code LLMs
generated code. A technique CodeBleu [30], builds on pre-
vious work for natural language evaluation BLEU [25], by
introducing code syntax via AST and code semantics via
data-flow analysis with the previous n-gram matching based
approach in BLEU. While these approaches have demon-
strated some success, one common criticism is that they do
not evaluate the semantics of the generated program at a
deeper level. One such approach to address this is by lever-
aging a pass@k rate [6], which measures the likelihood that
code generated from a model will pass a set of tests.

Retrieval and LLMs The process of retrieving relevant
context to provide to LLMs for generation tasks is called
Retrieval-Augmented Generation (RAG) [19]. General re-
trieval strategies often incorporate retrieval strategies such
as TF-IDF [33] or BM-25 [31], which can be extended to
capturing source code in programming languages. In the
context of code completion, retrieval is often leveraged to
provide context about code entities that an LLM is unaware
of from training, such as private code repositories. In order to
bring the most relevant context as part of the retrieval, there

have also been several works that introduce elements of static
analysis to guide the retrieval. Cheng et al. [7] incorporate a
dataflow analysis to track relationships between code entities
in order to retrieve the most relevant code entity signatures
as context, e.g., frequently used APIs. Our approach does
retrieve already learned error specifications as context to the
LLM during our interleaved analysis, but our approach is
concerned with both the LLM and static analyzer providing
learned error specifications to each other in order to increase
the overall learned program knowledge.

6 Conclusion

We have presented an approach for interleaving static pro-
gram analysis and LLMs for the task of error specification
inference. We have demonstrated that providing program
facts inferred by the EESI static analysis to the LLM helps
the LLM to infer correct error specifications, and in-turn
the results from the LLM can assist EESI to learn new error
specifications. Evaluating our approach on real-world bench-
marks shows that interleaving LLMs into static analysis us-
ing our approach improves average recall from 52.55% to
77.83% and improves F1-score from 0.612 to 0.804 without
significantly reducing precision.

Funding information This work was supported by the National Sci-
ence Foundation under awards CCF-1750983, CCF-2119348, and CCF-
2107592.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acharya, M., Xie, T.: Mining API error-handling specifications
from source code. In: Chechik, M., Wirsing, M. (eds.) Funda-
mental Approaches to Software Engineering, 12th International
Conference, FASE 2009, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009. York,
UK, March 22–29, 2009. Proceedings, Lecture Notes in Computer
Science, vol. 5503, pp. 370–384. Springer, York (2009). https://
doi.org/10.1007/978-3-642-00593-0_25

2. Ahmed, T., Devanbu, P.T.: Few-shot training llms for project-
specific code-summarization. In: 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10–14, 2022, pp. 177:1–177:5. ACM
(2022). https://doi.org/10.1145/3551349.3559555

Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-00593-0_25
https://doi.org/10.1007/978-3-642-00593-0_25
https://doi.org/10.1145/3551349.3559555

Interleaving static analysis and LLM prompting with applications to error specification inference 253

3. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agar-
wal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Lan-
guage models are few-shot learners. In: Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December
6–12, 2020, virtual (2020). https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

4. Chakraborty, S., Lahiri, S.K., Fakhoury, S., Lal, A., Musuvathi,
M., Rastogi, A., Senthilnathan, A., Sharma, R., Swamy, N.: Rank-
ing LLM-generated loop invariants for program verification. In:
Bouamor, H., Pino, J., Bali, K. (eds.) Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023, Singapore
December 6–10, 2023, pp. 9164–9175. Association for Com-
putational Linguistics (2023). https://doi.org/10.18653/v1/2023.
findings-emnlp.614

5. Chapman, P.J., Rubio-González, C., Thakur, A.V.: Interleaving
static analysis and LLM prompting. In: SOAP@PLDI, pp. 9–17.
ACM, New York (2024)

6. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,
Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G.,
Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A.,
Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P., Cum-
mings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin,
I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A.N., Leike,
J., Achiam, J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., Zaremba, W.: Evaluat-
ing large language models trained on code. CoRR (2021). arXiv:
2107.03374

7. Cheng, W., Wu, Y., Hu, W.: Dataflow-guided retrieval augmenta-
tion for repository-level code completion. In: ACL (2024)

8. Chibotaru, V., Bichsel, B., Raychev, V., Vechev, M.T.: Scalable
taint specification inference with big code. In: McKinley, K.S.,
Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA June 22–26, 2019, pp. 760–774.
ACM (2019). https://doi.org/10.1145/3314221.3314648

9. DeFreez, D., Baldwin, H.M., Rubio-González, C., Thakur, A.V.:
Effective error-specification inference via domain-knowledge ex-
pansion. In: ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August
26–30, 2019, pp. 466–476. ACM, New York (2019). https://doi.
org/10.1145/3338906.3338960

10. DeFreez, D., Thakur, A.V., Rubio-González, C.: Path-based func-
tion embedding and its application to error-handling specification
mining. In: ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,
USA November 4–9, 2018, pp. 423–433. ACM (2018). https://doi.
org/10.1145/3236024.3236059

11. DeFreez, D., Thakur, A.V., Rubio-González, C.: Path-based func-
tion embeddings. In: Chaudron, M., Crnkovic, I., Chechik, M.,
Harman, M. (eds.) Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden, May 27 – June 03, 2018, pp. 430–431.
ACM (2018). https://doi.org/10.1145/3183440.3195042

12. Dutta, S., Garbervetsky, D., Lahiri, S.K., Schäfer, M.: Inspectjs:
leveraging code similarity and user-feedback for effective taint
specification inference for JavaScript. In: 44th IEEE/ACM Interna-
tional Conference on Software Engineering: Software Engineering
in Practice, ICSE (SEIP) 2022, Pittsburgh, PA, USA, May 22–24,
2022, pp. 165–174. IEEE (2022). https://doi.org/10.1109/ICSE-
SEIP55303.2022.9794015

13. Fetzer, C., Högstedt, K., Felber, P.: Automatic detection and
masking of non-atomic exception handling. In: 2003 Interna-
tional Conference on Dependable Systems and Networks (DSN
2003), June 22–25, 2003, San Francisco, CA, USA, Proceedings,
pp. 445–454. IEEE Computer Society (2003). https://doi.org/10.
1109/DSN.2003.1209955

14. GitHub: Codeql (2021). https://codeql.github.com
15. Jr, F.B., Black, P.: The Juliet 1.1 C/C++ and Java test suite 45(10)

(2012). https://doi.org/10.1109/MC.2012.345
16. Kamath, A., Senthilnathan, A., Chakraborty, S., Deligiannis, P.,

Lahiri, S.K., Lal, A., Rastogi, A., Roy, S., Sharma, R.: Finding in-
ductive loop invariants using large language models. CoRR (2023).
https://doi.org/10.48550/arXiv.2311.07948. arXiv:2311.07948

17. Kang, Y.J., Ray, B., Jana, S.: Apex: automated inference of error
specifications for C apis. In: Lo, D., Apel, S., Khurshid, S. (eds.)
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, Septem-
ber 3–7, 2016, pp. 472–482. ACM (2016). https://doi.org/10.1145/
2970276.2970354

18. Lattner, C., Adve, V.S.: LLVM: a compilation framework for life-
long program analysis & transformation. In: 2nd IEEE / ACM
International Symposium on Code Generation and Optimiza-
tion (CGO 2004), San Jose, CA, USA, March 20–24, 2004,
pp. 75–88. IEEE Computer Society (2004). https://doi.org/10.
1109/CGO.2004.1281665

19. Lewis, P.S.H., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel, T., Riedel,
S., Kiela, D.: Retrieval-augmented generation for knowledge-
intensive NLP tasks. In: NeurIPS (2020)

20. Li, H., Hao, Y., Zhai, Y., Qian, Z.: Assisting static analysis with
large language models: a ChatGPT experiment. In: Chandra, S.,
Blincoe, K., Tonella, P. (eds.) Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3–9, 2023, pp. 2107–2111. ACM
(2023). https://doi.org/10.1145/3611643.3613078

21. Li, H., Hao, Y., Zhai, Y., Qian, Z.: Enhancing static analysis for
practical bug detection: an LLM-integrated approach (2024)

22. OpenAI: GPT-4 technical report (2023). https://doi.org/10.48550/
arXiv.2303.08774

23. OpenAI: GPT-4o (2024a). https://openai.com/index/hello-gpt-4o/
24. OpenAI: OpenAI developer platform (2024b). https://platform.

openai.com/docs/overview
25. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for

automatic evaluation of machine translation. In: ACL, pp. 311–318.
ACL (2002)

26. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can large language
models reason about program invariants? In: Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Interna-
tional Conference on Machine Learning, ICML 2023, Honolulu,
Hawaii, USA, July 23–29, 2023. Proceedings of Machine Learn-
ing Research, vol. 202, pp. 27496–27520. PMLR (2023). https://
proceedings.mlr.press/v202/pei23a.html

27. Prabhakaran, V., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:
Model-based failure analysis of journaling file systems. In: 2005
International Conference on Dependable Systems and Networks
(DSN 2005), 28 June – 1 July 2005, Yokohama, Japan, Proceed-
ings, pp. 802–811. IEEE Computer Society (2005). https://doi.org/
10.1109/DSN.2005.65

28. Prabhakaran, V., Bairavasundaram, L.N., Agrawal, N., Gunawi,
H.S., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: IRON file sys-
tems. In: Herbert, A., Birman, K.P. (eds.) Proceedings of the 20th
ACM Symposium on Operating Systems Principles 2005, SOSP
2005, Brighton, UK, October 23–26, 2005, pp. 206–220. ACM
(2005). https://doi.org/10.1145/1095810.1095830

Springer

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2023.findings-emnlp.614
https://doi.org/10.18653/v1/2023.findings-emnlp.614
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3314221.3314648
https://doi.org/10.1145/3338906.3338960
https://doi.org/10.1145/3338906.3338960
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1145/3183440.3195042
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794015
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794015
https://doi.org/10.1109/DSN.2003.1209955
https://doi.org/10.1109/DSN.2003.1209955
https://codeql.github.com
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.48550/arXiv.2311.07948
https://arxiv.org/abs/2311.07948
https://doi.org/10.1145/2970276.2970354
https://doi.org/10.1145/2970276.2970354
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3611643.3613078
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.1109/DSN.2005.65
https://doi.org/10.1109/DSN.2005.65
https://doi.org/10.1145/1095810.1095830

254 P.J. Chapman et al.

29. Radford, A., Narasimhan, K.: Improving language under-
standing by generative pre-training (2018). https://s3-us-west-
2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf

30. Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N.,
Zhou, M., Blanco, A., Ma, S.: CodeBLEU: a method for automatic
evaluation of code synthesis. CoRR (2020). arXiv:2009.10297

31. Robertson, S., Zaragoza, H.: The probabilistic relevance frame-
work: BM25 and beyond. 3(4), 333–389 (2009). ISSN 1554-0669.
https://doi.org/10.1561/1500000019

32. Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E.,
Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov,
I., Bitton, J., Bhatt, M., Canton-Ferrer, C., Grattafiori, A., Xiong,
W., Défossez, A., Copet, J., Azhar, F., Touvron, H., Martin, L.,
Usunier, N., Scialom, T., Synnaeve, G.: Code Llama: Open foun-
dation models for code. CoRR (2023). https://doi.org/10.48550/
arXiv.2308.12950. arXiv:2308.12950

33. Sparck Jones, K.: A statistical interpretation of term specificity and
its application in retrieval, pp. 132–142. Taylor Graham Publishing,
GBR (1988). ISBN 0947568212

34. Süßkraut, M., Fetzer, C.: Automatically finding and patching bad
error handling. In: Sixth European Dependable Computing Con-
ference, EDCC 2006, Coimbra, Portugal, October 18–20, 2006,
pp. 13–22. IEEE Computer Society (2006). https://doi.org/10.
1109/EDCC.2006.3

35. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S.,
Bikel, D., Blecher, L., Canton-Ferrer, C., Chen, M., Cucurull,
G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C.,
Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan,
H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev,
A., Koura, P.S., Lachaux, M., Lavril, T., Lee, J., Liskovich, D., Lu,
Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I.,
Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schel-
ten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang,

B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov,
I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A.,
Stojnic, R., Edunov, S., Scialom, T. (eds.): Llama 2: Open founda-
tion and fine-tuned chat models. CoRR (2023). arXiv:2307.09288.
https://doi.org/10.48550/arXiv.2307.09288

36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is
all you need. In: Luxburg, U., Bengio, S., Wallach, H.M.,
Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Sys-
tems 2017, Long Beach, CA, USA, December 4–9, 2017,
pp. 5998–6008 (2017). https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

37. Wang, X., Wei, J., Schuurmans, D., Le, Q.V., Chi, E.H., Narang,
S., Chowdhery, A., Zhou, D.: Self-consistency improves chain of
thought reasoning in language models. In: The Eleventh Inter-
national Conference on Learning Representations (2023). https://
openreview.net/forum?id=1PL1NIMMrw

38. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F.,
Chi, E., Le, Q., Zhou, D.: Chain-of-thought prompting elicits rea-
soning in large language models (2023). https://doi.org/10.48550/
arXiv.2201.11903

39. Wen, C., Cai, Y., Zhang, B., Su, J., Xu, Z., Liu, D., Qin,
S., Ming, Z., Tian, C.: Automatically inspecting thousands of
static bug warnings with large language model: How far are we?
ACM Trans. Knowl. Discov. Data (2024). https://doi.org/10.1145/
3653718. ISSN 1556-4681

40. Wu, B., C, J.P. III, He, Y., Schlecht, A., Chen, S.: Generating
precise error specifications for C: a zero shot learning approach.
Proc. ACM Program. Lang. 3(OOPSLA), 160:1–160:30 (2019).
https://doi.org/10.1145/3360586

Publisher’s note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/2009.10297
https://doi.org/10.1561/1500000019
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1109/EDCC.2006.3
https://doi.org/10.1109/EDCC.2006.3
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3360586

	Interleaving static analysis and LLM prompting with applications to error specification inference
	Abstract
	Introduction
	Comparison to previous work

	Background and motivating example
	Error specification inference for C programs
	EESI analysis for error specification inference
	Large language models (LLMs)
	A motivating example

	Approach
	Building prompts
	Common context
	Function context
	Question

	Error specification inference
	Third-party function error specifications
	Error specification analysis
	Validating the LLM response

	Tracking sources of inference

	Experimental evaluation
	Experimental setup
	Benchmarks
	Domain knowledge
	Evaluation metrics and ground truth
	Implementation details

	RQ0: how well does the static analysis of EESI perform?
	RQ1: what is the impact of using the LLM to infer third-party error specifications?
	RQ2: what is the impact of using the direct LLM analysis?
	RQ3: what is the impact of interleaving EESI and the LLM?
	RQ4: what are the sources of imprecision of the interleaved analysis?
	(1) How much does incorrect background knowledge contribute to false positives?
	(2a) What percentage of incorrect background knowledge is due to the LLM?
	(2b) Is there a relationship between the number of LLM calls on an inference path, the total path length, and false positives?
	(3) How much of the imprecision is related to the ∅ error specification?
	(4) How much does the nondeterminism of the LLM affect the results?

	RQ5: what is the performance cost in using the LLM in the interleaved analysis?

	Related work
	Error specification inference
	Program analysis and LLMs
	Program analysis and machine learning
	Code LLMs
	Retrieval and LLMs

	Conclusion
	References

