
1

Proofs from Tests
Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J. Simmons, SaiDeep Tetali, Aditya V. Thakur

Abstract—We present an algorithm DASH to check if a program P satisfies a safety property ϕ. The unique feature of this algorithm
is that it uses only test generation operations, and it refines and maintains a sound program abstraction as a consequence of failed
test generation operations. Thus, each iteration of the algorithm is inexpensive, and can be implemented without any global may-alias
information. In particular, we introduce a new refinement operator WPα that uses only the alias information obtained by symbolically
executing a test to refine abstractions in a sound manner. We present a full exposition of the DASH algorithm and its theoretical
properties. We have implemented DASH in a tool called YOGI that plugs into Microsoft’s Static Driver Verifier framework. We have used
this framework to run YOGI on 69 Windows Vista drivers with 85 properties and find that YOGI scales much better than SLAM, the
current engine driving Microsoft’s Static Driver Verifier.

Index Terms—Software model checking; Directed testing; Abstraction refinement

F

1 INTRODUCTION

In his 1972 Turing Lecture titled “The Humble Program-
mer” Edsger W. Dijkstra said, “Program testing is a
very effective way to show the presence of bugs, but
is hopelessly inadequate for showing their absence” [1].
While Dijkstra’s statement holds if we consider program
testing as a black-box activity, tests can indeed be used
to progressively guide the construction of proofs if we
are allowed to instrument the program and inspect the
states that a program goes through during testing.

Over the past few years, there has been dramatic
progress in using light-weight symbolic execution [2],
[3], [4] to do automatic test generation. In this paper,
we present a new algorithm to show that similar light-
weight symbolic execution can also be used to prove that
programs satisfy safety properties.

We build on the SYNERGY algorithm [5], which simul-
taneously performs program testing and program ab-
straction in order to check safety properties of programs.
The tests are an “under-approximation” of the program’s
behavior, and the abstraction is an “over-approximation”
of the program’s behavior. The goal is to either find a test
that reaches an error state, or find an abstraction that is
precise enough to show that no path in the program can
reach any error state. The SYNERGY algorithm works by
iteratively refining the tests and the abstraction, using
the abstraction to guide generation of new tests and
using the tests to guide where to refine the abstraction.

Our new algorithm, DASH, makes three significant ad-
vances over SYNERGY. First, DASH uses test generation
not only to guide where to perform the refinement of
the abstraction, but also to decide how the abstraction
should be refined. Unlike the SYNERGY algorithm, there
are no extra theorem prover calls in the DASH algorithm
to maintain the abstraction. The theorem prover is used
only to do test generation, and refinement is done as a
byproduct of a failed test generation attempt. Second,
the DASH algorithm handles programs with pointers

without using any whole-program may-alias analysis
(the SYNERGY algorithm does not handle programs
with pointers). DASH refines the abstraction in a sound
manner using only aliasing relationships that actually
arise during a symbolic execution of a test. Finally, the
DASH algorithm is an interprocedural algorithm, and it
uses recursive invocations of itself to handle procedure
calls (the SYNERGY algorithm does not handle procedure
calls).

Current approaches to proving properties of programs
with pointers try to reason about aliasing using a conser-
vative whole program “may-alias” analysis (see Section
4.2 in [6], and Section 6 in [7]). The alias analysis
needs to be flow-sensitive, field-sensitive, and even path-
sensitive, to be strong enough to prove certain properties
(see examples in Section 2), and scalable pointer analyses
with these precision requirements do not exist. In addi-
tion, there are situations, such as analyzing x86 binaries
directly, where global alias information is difficult to
obtain. The DASH algorithm uses a different technique
to perform refinement without using may-alias informa-
tion. We define a new operator WPα that combines the
usual weakest precondition operator [8] with an alias set
α. The alias set α is obtained during symbolic execution
of the specific test that the algorithm is attempting to
extend. If the test generation fails, we show that the
predicate WPα can be used to refine the abstraction
in a sound manner, without using any extra theorem
prover calls (see Section 4.2.1). This has the effect of
analyzing only the alias possibilities that actually occur
during concrete executions without resorting to a global
(and necessarily imprecise) alias analysis that reasons
about all executions. Consequently, in many cases, we
can show that DASH produces abstractions that are
exponentially smaller than those considered by tools
such as SLAM [9] and BLAST [7].

Even though DASH uses alias information from tests
to avoid explosion in the computation of WP, the idea is
useful in several other settings. For instance, explosion

2

struct ProtectedInt
{
int *lock;
int *y;

};

int *lock1, *lock2;

void LockUnlock(struct ProtectedInt *pi, int x)
{
0: int do_return = 0;
1: if (pi->lock == lock1) {
2: do_return = 1;
3: pi->lock = lock2;

}
4: else if (pi->lock == lock2) {
5: do_return = 1;
6: pi->lock = lock1;

}
//initialize all locks to be unlocked

7: *(pi->lock) = 0;
8: *lock1 = 0;
9: *lock2 = 0;

10: if (do_return) return;
11: else {
12: do {
13: if (*(pi->lock) != 0)
14: error();
15: *(pi->lock) = 1; // lock
16: if(*lock1 ==1 || *lock2 ==1)
17: error();
18: x = *(pi->y);
19: if (NonDet()) {
20: (*(pi->y))++;
21: if (*(pi->lock) != 1)
22: error();
23: *(pi->lock) = 0; // unlock
24: }
25: } while(x != *(pi->y));

}
26: if (*(pi->lock) != 1)
27: error();
28: *(pi->lock) = 0; // unlock
}

Fig. 1. The LockUnlock function acquires and releases
pi->lock in strict alternation.

due to aliasing even happens using other methods for
refinement, such as interpolants [10]. Thus, we believe
that the WPα idea of using aliasing information from
tests can be useful in other verification tools.

This journal paper is an extended version of our
conference paper [11] with more comprehensive exper-
imental results and a more detailed explanation of the
DASH algorithm.

2 OVERVIEW
Over the past few years, several tools based on predi-
cate abstraction and counterexample-guided abstraction
refinement, such as SLAM [9] and BLAST [7], have been
built in order to compute proofs of programs for var-
ious properties. The algorithms implemented in these
tools have two main bottlenecks. First, the algorithms
require many expensive calls to a theorem prover at
every step, which adversely impacts scalability. Second,
they use global may-alias information, which is typically
imprecise and impacts the ability of these tools to prove
properties that involve complex aliasing. There has also
been dramatic progress in testing techniques like DART,
EXE and CUTE using light-weight symbolic execution [2],
[3], [4]. These testing tools focus on finding errors in pro-
grams by way of explicit path model checking and are

unable, in general, to establish that errors do not exist.
Our work can be viewed as combining the successful
ideas from proof-based tools like SLAM and BLAST with
testing-based tools like DART, EXE and CUTE with the
goal of improving scalability.
Motivating Example. We use the example program in
Figure 1 as a motivating example. An error is said to
have occurred in this program if the error() function is
ever called. This program locks pi->lock at line 15 and
unlocks pi->lock at line 23 and line 28. Locking and
unlocking can happen an arbitrary number of times as
they occur inside a do-while loop (lines 12 - 25). The
NonDet() function call at line 19 models nondetermin-
ism, and is assumed to return either true or false arbitrar-
ily. Even though the function LockUnlock never raises
any error, proving this automatically is challenging. First,
if lock1 or lock2 alias with pi->lock, the function
returns without entering the loop. However, due to the
assignments in lines 3 and 6, a flow-sensitive analysis
would fail to determine the fact that inside the do-while
loop lock1 or lock2 do not alias pi->lock. Thus, it
is challenging to show that the error in line 17 cannot
be reached with anything short of path-sensitive alias
information. As we show below, DASH uses alias sets
that occur by performing symbolic execution on paths
explored by concrete tests, and a new operator WPα
to obtain only the path-sensitive alias information that
is required to prove correctness. Second, the do-while
loop continues to execute only if the ‘then’ branch of the
conditional at line 19 is entered. The loop invariant (at
line 25) is that *(pi->lock) is 1 (meaning ‘locked’) if
and only if (x == *(pi->y)). As we will show, DASH
can automatically discover this non-trivial invariant.
DASH Algorithm. The input to the DASH algorithm
consists of a program P with an infinite state space Σ and
a set of error states ϕ. DASH maintains two data struc-
tures. First, it maintains the collection of previously-run
tests as a forest F . Each path in the forest F corresponds
to a concrete execution of the program. The algorithm
grows F by adding new tests, and as soon as an error
state is added to F , a real error has been found. Second, it
maintains a finite relational abstraction Σ' of the infinite
state space Σ. The states of the abstraction, called regions,
are equivalence classes of concrete program states from
Σ. There is an abstract transition from region S to region
S′ if there are two concrete states s ∈ S and s′ ∈ S′

such that there is a concrete transition from s to s′. This
abstraction is initially just the control flow graph of a
program, but is gradually be refined over time in an
attempt to prove that error states are unreachable. At all
times this abstraction represents an over-approximation
of all concrete executions, so that if there is no path from
the initial region to the error region ϕ, we can be sure
that there is no path of concrete transitions from some
concrete initial state to a concrete error state and a proof
of correctness has been found.

In every iteration of the DASH algorithm, we first find
an abstract error path (a path through the abstraction

3

Σ') from the initial region to the error region. If no such
abstract error path exists, then a proof of correctness has
been found. If any such abstract error path exists, then
we can always find an “ordered” path τe with a prefix
τpe such that (1) τpe corresponds to a concrete path in
F and (2) no region in τe after the prefix τpe is visited
in F . We will refer to the edge in τe that connects the
last region in the prefix τpe to the first unvisited region
in τe, as the frontier. For example, Figure 2(a) shows an
abstract graph. We represent regions of the abstraction
Σ' as “clouds” and represent states from the forest F
using “×”s in the figure. This abstract graph has an
initial region 0 and error region 9. The edge connecting
region 4 and region 7 in Figure 2(a) is the frontier for the
abstract error path τe = 〈0, 1, 2, 3, 4, 7, 8, 9〉. DASH now
tries to find a new test which follows the ordered path
τe for at least one transition past the frontier.

Techniques developed for directed testing [2], [3], [4]
are used to generate this test. Specifically, a light-weight
symbolic execution along the path τpe collects constraints
at every state as functions of the inputs to the program.
In programs with pointers, the symbolic execution along
τpe is done in a “pointer-aware” manner keeping track of
the aliases between variables in the program. Let ϕ1 be
the constraint generated by performing symbolic execu-
tion along τpe , and let ϕ2 be the constraint generated by
extending the symbolic execution along the frontier edge
(see Figure 2 (a)). We have two possibilities:

• If the formula ϕ1 ∧ ϕ2 is satisfiable, then any test
input satisfying it moves the frontier forward and
closer to the error region. For instance, in Figure 2,
the generated test (satisfying ϕ1 ∧ ϕ2) moves the
frontier forward from edge (4, 7) in Figure 2(a) to
the edge (8, 9) in Figure 2(b).

• If ϕ1 ∧ ϕ2 is unsatisfiable, we can prove that there
exist so called ’suitable’ predicates (defined pre-
cisely later) to refine the region at the frontier so
that the frontier moves backward. For instance, in
Figure 2(b) we find that the region 4 can be par-
titioned into two regions 4 :¬ρ and 4 :ρ such that
all concrete states reached by tests along τpe are all
in the region 4 : ¬ρ, and there is no edge in the
abstraction graph from region 4 : ¬ρ to region 7.
Due to this refinement the frontier backward from
edge (4, 7) in Figure 2(a) to the edge (3, 4 : ρ) in
Figure 2(c). A key insight in the DASH algorithm is
that if the formula ϕ1 ∧ ϕ2 is unsatisfiable, then the
alias conditions α from the formula ϕ1 can be used
to compute a suitable predicate ρ for refinement (see
Section 4.2 for details).

In either case, the DASH algorithm continues by choos-
ing a new ordered error path until either some test that
reaches the error ϕ is added to F or until the refined
abstraction Σ' provides a proof of correctness that ϕ
can never be reached. Since the problem is undecidable
in general, it is possible that DASH does not terminate.
Next, we illustrate the DASH algorithm on examples.

Fig. 2. The role of a frontier in the DASH algorithm.

void alias(int *p, int *p1, int *p2)
{
0: if (p == p1) return;
1: if (p == p2) return;
2: *p1 = 0; *p2 = 0;
3: *p = 1;
4: if (*p1 == 1 || *p2 == 1)
5: error();
6: p = p1;
7: p = p2;
}

Fig. 3. Simplified example to illustrate DASH.

Handling aliasing. As an example in this section, we
use the simple program alias shown in Figure 3. This
program has three inputs p, p1 and p2, all of which are
pointers to int. At lines 0 and 1, pointers p1 and p2
are compared with p and the function returns if p1 or
p2 alias p.

Since there is no aliasing between p and the other
pointers, the assignment of 1 to *p will not affect the
value of *p1 or *p2, and the error will not be reached.
However, a flow-insensitive alias analysis will miss this
because, p does alias p1 and p2 at later points in the
program. As we describe below, DASH is able to prove
this program correct while only ever considering the
alias combination (p 6= p1 ∧ p 6= p2) that occurs along
paths explored by concrete executions.

DASH first creates the initial abstraction Σ' for the
program alias that is isomorphic to its control flow
graph (shown in Figure 4(a)). As before, we represent
regions of the abstraction Σ' as “clouds” and represent
states from the forest F using “×”s in the figure. In order
to save space, we do not show regions for line numbers
6, 7 and the exit location of the function. The abstract
transitions are shown using solid lines, and the edges
of the forest F are shown using dashed lines. DASH
performs four refinements of this program as shown in
Figure 4. First, the initial forest is created by running
alias with a random test that assigns values to its
inputs p, p1 and p2, thus creating a forest Falias of
concrete states. Let us suppose that this test created
values such that p1 and p2 do not alias p. Running this
test did not result in the error location being reached
(there is no × representing a concrete state in the error
region 5).

In the first iteration, DASH finds the (abstract) error
path τe = 〈0, 1, 2, 3, 4, 5〉 and the corresponding prefix

4

Fig. 4. Abstraction computed by DASH on the example
program from Figure 1.

τpe = 〈0, 1, 2, 3, 4〉 of τe as shown in Figure 4(a). DASH
now performs symbolic execution for one transition
beyond the prefix τpe (that is, the path 〈0, 1, 2, 3, 4, 5〉).
The formula obtained from this symbolic execution is
infeasible. Thus, this path is determined to be infeasible,
and therefore DASH refines region 4 using the predi-
cate ρ = (∗p1 = 1) ∨ (∗p2 = 1), which is computed
by the weakest precondition operator WP applied to
the assume statement assume((*p1 ==1) || (*p2
== 1)).

In the second iteration, DASH examines an (abstract)
error path τe = 〈0, 1, 2, 3, 4 : ρ, 5〉 that leads to the error
region. It considers the prefix τpe = 〈0, 1, 2, 3〉 of τe that
contains concrete states in the forest F , as shown in
Figure 4(b). Then, it tries to add a test to Falias that
covers the transition (3, 4 : ρ). This also turns out to be
not possible, so the DASH algorithm refines region 3. If
we were to do this refinement using the WP operator, we
note that WP(*p=1, (∗p1 = 1)∨(∗p2 = 1)) has to consider
all possible alias combinations between p, p1 and p2.
Instead, DASH uses the WPα operator (defined in Section
4.2.1) with respect to the alias combination (p 6=p1 ∧ p 6=
p2) that occurs by performing symbolic execution along
the path executed by the test, and computes the predicate
η=¬((p 6=p1∧p 6=p2)∧¬((∗p1 = 1)∨(∗p2 = 1))) as shown
in Figure 4(c). In comparison, tools like SLAM [9] and
BLAST [7] have to consider 4 possible aliasing conditions
– (p = p1 ∧ p = p2), (p = p1 ∧ p 6= p2), (p 6= p1 ∧ p = p2)
and (p 6= p1 ∧ p 6= p2) in order to be sound. In two
more iterations, the abstraction shown in Figure 4(d) is
obtained, and since there is no path in the abstraction
from the initial region 1 to the error region 5, we have a
proof that the program is correct.

The reader might wonder at this point as to how a
sound proof can be obtained by considering only the
alias combination possible to drive (p 6= p1 ∧ p 6= p2) at
line 3. The only reachable alias configuration at region
3 is (p 6= p1 ∧ p 6= p2), and such executions fall inside
the region 3:¬η. The other three alias combinations (1)
(p 6=p1∧p=p2), (2) (p=p1∧p 6=p2), (3) (p=p1∧p=p2), are
grouped inside a single region 3 :η. However, since 3 :η
is not reachable by any concrete test, there is no need to

void foo(int *p, int *p1, int *p2, ... , int *pn)
{
0: if(p == p1) return;
1: if(p == p2) return;

...

...
if(p == pn) return;

2: *p1 = 0; *p2=0; ...; *pn = 0
3: if (*p1==1 || ... || *pn==1)
4: error();
5: p = p1;

p = p2;
...
p = pn;

}

Fig. 5. Aliasing example with n pointers

separately enumerate these three unreachable alias com-
binations (If indeed one of these aliases were reachable,
DASH would be able to drive a test into 3 : η which
might result in the region being partitioned further).
Thus, WPα enables DASH to partition the alias space so
as to group all the unreachable alias configurations into
a small number of regions without having to enumerate
them individually.

Moreover, it can be shown that there is an exponential
blow-up in the predicates computed by SLAM for the
class of programs defined by the program shown in
Figure 5 parameterized by n (we have verified this by
running SLAM and measuring run times as a function of
n), whereas DASH does not encounter this blowup since
it uses alias information from tests to reason only about
the alias combinations that actually happen.
Handling loops. Consider again the example from Fig-
ure 1. Similar to our explanation above, DASH can
show that the error at line 17 can never be reached
while only considering the alias possibility (lock1 6=
pi→ lock) ∧ (lock2 6= pi→ lock) inside the while loop.
However, proving that the calls to error() at lines 14,
22 and 27 are unreachable requires computing the loop
invariant at line 25 that pi->lock is locked if and
only if pi->x = y. The detailed explanation of how
DASH computes this invariant automatically is tedious,
and requires walking through several iterations of the
algorithm. For brevity, we give a higher level sketch of
how the invariant is computed. At first, DASH considers
an abstract error trace that reaches the error at line 14.
Since it is possible to get concrete tests up until the
conditional at line 13, the frontier for this error trace is at
line 13. DASH attempts to extend this test case to line 14
and discovers that such a test case cannot be generated.
Thus, it computes WP of the conditional at line 13 and
generates the predicate (∗(pi → lock) = 0). In a subse-
quent iteration, this predicate is propagated back across
the while loop using WP(assume(x != *(pi->y)),
(∗(pi→ lock) = 0)), resulting in the predicate (x 6= ∗(pi →
y) ∧ ∗(pi → lock) = 0). After propagating this predicate
throughout the loop body, DASH is able to establish that
the only paths that re-enter the loop are from the region
(x 6= ∗(pi → y) ∧ ∗(pi → lock) = 0) at line 25. Thus,
the program abstraction allows DASH to determine the
desired loop invariant and establish that there is no path
in the abstraction from the initial region to any error

5

void top(int x)
{

int a, b;
0: a = inc(x);
1: b = inc(a);
2: if (b != x+2)
3: error();
4: return;
}

int inc(int y)
{

int r;
0: r = y+1;
1: return r;
}

Fig. 6. A simple example for interprocedural property
checking.

region. In contrast, testing tools like DART or CUTE must
handle paths one by one, and hence they will explore
only a finite number of paths through loops. Such tools
are unable to prove examples such as Figure 1 correct.

Verification tools such as SLAM and BLAST on one
hand, and testing tools such as DART, EXE and CUTE
on the other hand, have complementary strengths. Ver-
ification tools are able to use abstractions to handle
loops, obtain high coverage but suffer primarily due to
imprecision in alias analysis. In contrast, testing tools are
able to use precise alias information in specific paths, but
are unable to handle loops and have limited coverage.
DASH is able to combine the advantages of these two
families of tools.
Interprocedural Property Checking. For programs with
several procedures, we describe a modular approach to
extend DASH. First, the notion of forests and abstrac-
tions can be easily extended to programs with multiple
procedures by maintaining a separate forest FP and a
separate abstraction Σ'P

for every procedure P . The only
case where the DASH algorithm needs to be modified is
when the frontier we are trying to extend happens to
be a procedure call-return edge (S, T). In such a case,
DASH simply invokes itself recursively on the called
procedure, by appropriately translating the constraint
induced by the prefix τpe into appropriate initial states
of the called procedure and translating the predicate on
the target region T into appropriate error states of the
called procedure.

We explain this through the example in Figure 6,
where procedure top that makes two calls to an in-
crement procedure inc. We show how DASH proves
that the call to error() (line 3 in top) is unreachable.

DASH first creates the abstractions Σ'top
and Σ'inc

for the procedures top and inc respectively (shown
in Figure 7(a)). Next, the initial forests are created by
running a random test (say x=2) for top, thus creating
a forest of concrete states (assume that every concrete
state × is connected to its parent within a procedure)
for each procedure (Figure 7(a)). Since running the test
does not result in the error location being reached, DASH
examines an (abstract) error path τe = 〈0, 1, 2, 3〉 with
prefix τ=〈0, 1, 2〉 in Σ'top

(shown in Figure 7(a)). DASH
now tries to add a test to Ftop that follows τe for at least
one transition beyond the prefix τ by using combination
of symbolic execution and theorem proving [2], [4], that
is, a test that covers the edge (2, 3). It turns out that
such a test is not possible and therefore DASH refines
the abstraction Σ'top

by removing the abstract transition

(2, 3). This is done using the WPα operator that returns
the predicate ρ=(b 6= x+2). Then, by applying template-
based refinement, DASH refines the partition 2 to two
partitions – 2:ρ and 2:¬ρ, and we obtain the abstraction
shown in Figure 7(b).

Next, DASH continues by choosing a new abstract
error path τe = 〈0, 1, 2:ρ, 3〉 in the procedure top, with
prefix τ = 〈0, 1〉. Since the abstract transition (1, 2 : ρ)
that is to be tested now corresponds to a call to the
procedure inc, we make a recursive call to DASH on
the procedure inc. This call to DASH checks whether
a test can be run on inc with a precondition induced
by τ and postcondition induced by the state 2 : ρ in
top. It turns out that this recursive call to DASH returns
a “fail” indicating that such a test is not feasible, and
this results in refinement of the region 1 with respect
to the predicate η (shown in Figure 7(c)). We show
how η is computed in Section 4.2.1. After some more
iterations, DASH computes the abstraction Σ'top

(shown
in Figure 7(d)) that proves that the error location is
unreachable in the procedure top.

3 RELATED WORK

Several papers have predicted that testing and verifica-
tion can be combined in deep ways [12], [13]. Yorsh, Ball
and Sagiv have proposed an approach that involves both
abstraction and testing [14]. Their approach examines
abstract counterexamples and fabricates new concrete
states along them as a heuristic to increase the cover-
age of testing. They can also detect when the current
program abstraction is a proof. Unlike DASH, they do
not have a refinement algorithm. Kroening, Groce and
Clarke describe a technique to perform abstraction re-
finement using concrete program execution [15]. Their
refinement algorithm is based on partial program sim-
ulation using SAT solvers. In contrast, DASH uses tests
to choose the frontiers of abstract counterexamples, and
tries to either extend or refine each frontier with exactly
one theorem prover call. The SYNERGY algorithm [5]
also combines testing and abstraction refinement based
verification algorithms in a novel way. SYNERGY uses
tests to decide where to refine the abstraction and makes
theorem prover calls to maintain the abstraction. We
have compared DASH with SYNERGY in Section 1.

Verification tools such as SLAM employ an inter-
procedural dataflow engine to analyze programs with
multiple procedures. This involves computing abstract
summaries for every procedure in the program. Recently,
interprocedural extensions to testing tools have been
proposed [16], [17]. The extension to DART [16] com-
putes concrete summaries (tests) for every procedure in
the program. DASH is an interprocedural analysis algo-
rithm that combines testing and abstraction. Intuitively,
DASH analyzes called functions using path-sensitive in-
formation from the caller, and the result of this analysis
is fed back to the caller in the form of both concrete as
well as abstract summaries (though we do not describe

6

Fig. 7. Abstractions computed by DASH on the example program from Figure 6.

them as summaries in the description of the algorithm).
DASH currently does not reuse summaries computed in
one context in a different context. This is ongoing work
described in [18].

Several methods for doing refinement have been
proposed, including backward propagation from error
states [19], forward propagation from initial states [9],
and using interpolants [10]. In all these cases, a theorem
prover call is required at every step of the trace to refine
the abstraction, and a global may-alias analysis is needed
to maintain the refined abstraction. In addition, several
theorem prover calls are used to maintain the abstraction
after doing the refinement. In contrast, DASH is built
primarily around test generation. In the event of a failed
test generation, DASH has enough information to know
that the frontier between the regions covered by tests and
the regions not covered by tests is a suitable refinement
point without having to do any further theorem prover
calls. As we show in Theorem 3, Section 4.2.1, we can use
the operator WPα to compute a refinement at the frontier
that is guaranteed to make progress without making
any extra theorem prover calls and without using any
global may-alias information. Thus, every iteration of
DASH is considerably more efficient; its efficiency is
comparable to that of test generation tools such as CUTE
and DART. The price we pay is that DASH may have to
perform more iterations, since the discovered predicate
is lazily propagated backward one step at a time through
only those regions which are discovered to be relevant;
therefore, several iterations of DASH are comparable to
a single iteration of a tool like SLAM. However, as our
empirical results show, this tradeoff works very well in
practice.

An alternative way to handle aliasing is to model
memory as an array, all pointers as indexes into the array,
and use the theory of arrays to handle case analysis for
aliasing in the theorem prover. This approach is followed
by verification tools that are based in verification condi-
tion generation such as ESC [20], and BOOGIE [21]. While
the theory of arrays is a useful way to handle aliasing
for modular local reasoning, our approach is more useful
for global reasoning. In order to perform modular local
reasoning, one would need other structural ways of
constraining the aliases in a program such as ownership
models or frame conditions. Since DASH deals with
existing C programs or x86 binaries, which have been

developed without any constraints on aliasing, such
structural ways of constraining aliases are not possible.

Namjoshi and Kurshan [22] have proposed doing
refinements without using theorem provers, using the
weakest precondition operator. However, their scheme
does not use tests to identify the point where refinement
needs to be done. Unlike DASH, their work does not
handle pointers or aliasing.

Thomas Ball has suggested the idea of using forward
symbolic simulation for pointers together with weak-
est precondition computation to reduce the number of
aliasing predicates generated by SLAM [23]. The idea of
WPα is related in that it uses alias information from
tests to reduce the explosion in the number of cases
to be considered for weakest precondition computation.
However, the design of WPα is unique to DASH in
the sense that we can prove that the algorithm makes
progress (see Theorem 1) only if WPα is applied at the
frontier, after a failed test case generation attempt.

4 ALGORITHM

We will consider C programs and assume that they
have been transformed to a simple intermediate form
where: (a) all statements are labeled with a program
location, (b) all expressions are side-effect free and do not
contain multiple dereferences of pointers (e.g., (∗)k>1p),
(c) intraprocedural control flow is modeled with if (e)
goto l statements, where e is an expression and l is a
program location, (d) all assignments are of the form *m =
e, where m is a memory location and e is an expression
and (e) all function calls (call-by-value function calls) are
of the form *m = f(x1,x2,...,xn), where m is a
memory location.

Though our presentation considers only pointer deref-
erences of the form *p, our implementation also sup-
ports structures with fields, and pointers to structures
with dereferences of the form p->f.
Syntax. Let Stmts be the set of valid statements in
the simple intermediate form. Formally, a program P is
given by a tuple of procedures 〈P0, P1, . . . , Pn〉, where
each component procedure Pi = 〈Ni, Li, Ei, n0

i , λi, Vi〉 is
defined by the following.
• A finite set Ni of nodes, each uniquely identified by

a program location from the finite set Li of program
locations.

7

• A set of control flow edges Ei ⊆ Ni ×Ni.
• A special start node n0

i ∈ Ni which represents the
procedure’s entry location.

• A labeling λi : Ei → Stmts, that labels each
edge with a statement in the program. If λi(e) is
a function call, then we will refer to the edge e as
a call-return edge. We will denote the set of all call-
return edges in Ei by CallRet(Ei).

• A set Vi of variables (consisting of parameters, local
variables and global variables) that are visible to
the procedure Pi. We will assume that all lvalues
and expressions are of type either pointer or integer.
Additionally, Vi will contain a special variable pci
which takes values from Li.

We will refer to the procedure P0 as the main procedure,
and this is where the execution of the program P begins.

Semantics. Let Σ be the (possibly infinite) state space
of a procedure P = 〈N,L,E, n0, λ, V 〉, defined as the set
of all valuations to the variables in V . Every statement
op∈ Stmts defines a state transition relation

op→: Σ × Σ,
and this naturally induces a transition relation → : Σ ×
Σ for the procedure P . Let σI ⊆ Σ denote the set of
initial states of P . We use ∗→ to denote the reflexive and
transitive closure of the transition relation→. A property
ϕ ⊆ Σ is a set of bad states that we do not want the
program to reach. An instance of the property checking
problem is a pair (P,ϕ). The answer to (P,ϕ) is “fail”
if there is some initial state s ∈ σI and some error state
s′ ∈ ϕ such that s ∗→ s′, and “pass” otherwise.

Our objective is to produce certificates for both “fail”
and “pass” answers. A certificate for “fail” is an error
trace, that is, a finite sequence s0, s1, . . . , sn of states such
that: (1) s0∈σI , (2) si→si+1 for 0≤ i<n, and (3) sn ∈ ϕ.

A certificate for “pass” is a finite-indexed partition
Σ' of the state space Σ which proves the absence of
error traces. We refer to the equivalence classes of the
partition Σ' as regions. The partition Σ' induces an
abstract procedure P' = 〈Σ', σI',→'〉, where σI' =
{S ∈ Σ' | S ∩ σI 6= ∅} is the set of regions that contain
initial states, and S→'S′ for S, S′ ∈ Σ' if there exist
two states s ∈ S and s′ ∈ S′ such that s→ s′. We allow
for the possibility that S→'S′ when there do not exist
states s ∈ S and s′ ∈ S′ such that s→ s′.

Let ϕ' = {S ∈ Σ' | S ∩ ϕ 6= ∅} denote the
regions in Σ' that intersect with ϕ. An abstract error
trace is a sequence S0, S1, . . . , Sn of regions such that:
(1) S0 ∈ σI', (2) Si→'Si+1 for all 0 ≤ i < n, and (3)
Sn ∈ ϕ'.

The finite-indexed partition Σ' is a proof that the
procedure P cannot reach the error ϕ if there is no
abstract error trace in P'.

4.1 The DASH Algorithm
We will first assume that the program P= 〈P 〉 has one
procedure P , and discuss how we handle programs with
multiple procedures in Section 4.4. The algorithm DASH

DASH(P = 〈Σ, σI ,→〉, ϕ)
Returns:
(“fail”, t), where t is an error trace of P reaching ϕ; or
(“pass”, Σ'), where Σ' is a proof that P cannot reach ϕ.

1: Σ' :=
⋃
l∈L
{{(pc, v) ∈ Σ | pc = l}}

2: σI' := {S ∈ Σ' | pc(S) is the initial pc}
3: →' := {(S, S′) ∈ Σ'×Σ' | Edge(S, S′) ∈ E}
4: P' := 〈Σ', σI',→'〉
5: F := Test(P)
6: loop
7: if ϕ ∩ F 6= ∅ then
8: choose s ∈ ϕ ∩ F
9: t := TestForWitness(s)

10: return (“fail”, t)
11: end if
12: τ := GetAbstractTrace(P', ϕ)
13: if τ = ε then
14: return (“pass”, Σ')
15: else
16: τo := GetOrderedAbstractTrace(τ, F)
17: 〈t, ρ〉 := ExtendFrontier(τo, P)
18: if ρ = true then
19: F := AddTestToForest(t, F)
20: else
21: let S0, S1, . . . , Sn = τo and
22: (k−1, k) = Frontier(τo) in
23: Σ' := (Σ' \ {Sk−1}) ∪
24: {Sk−1 ∧ ρ, Sk−1 ∧ ¬ρ}
25: →' := (→' \ {(S, Sk−1) | S ∈ Parents(Sk−1)})
26: \{(Sk−1, S) | S∈(Children(Sk−1))}
27: →' := →' ∪ {(S, Sk−1 ∧ ρ) | S ∈ Parents(Sk−1)}∪
28: {(S, Sk−1 ∧ ¬ρ) | S ∈ Parents(Sk−1)}∪
29: {(Sk−1 ∧ ρ, S) | S∈(Children(Sk−1))}∪
30: {(Sk−1 ∧ ¬ρ, S) |S∈(Children(Sk−1) \ {Sk})}
31: end if
32: end if
33: end loop

Fig. 8. The DASH algorithm.

shown in Figure 8 takes the property checking instance
(P,ϕ) as input and can have three possible outcomes:

(1) It may output “fail” together with a test t that
certifies that P can reach ϕ.

(2) It may output “pass” together with a proof Σ'
that certifies that P cannot reach ϕ.

(3) It may not terminate.

DASH maintains two data structures: (1) a finite forest
F of states where for every state s ∈ F , either s 6∈
σI and parent(s) ∈ F is a concrete predecessor of s
(parent(s)→s), or s ∈ σI and parent(s) = ε, and (2) a
finite-indexed partition Σ' of the state space Σ of P .
The regions of Σ' are defined by pc values and pred-
icates over program variables. Let pc(S) denote the
program location associated with region S, and let
Edge(S, S′) be a function that returns the control flow
edge e ∈ E that connects regions S and S′. Initially
(lines 1–4), there is exactly one region for every pc
in the procedure P ; therefore, the abstract procedure
P' is initially isomorphic to the control flow graph of
the procedure P . The function Test (line 5) tests the
procedure P using test inputs for P , and returns the
reachable concrete states of P in the form of a forest F
(which is empty if no test inputs for P are available). The
test inputs for P may come from previous runs of the
algorithm, from external test suites, or from automatic
test generation tools. It is important to note that in our
experimental evaluation (Section 5) we assume that Test
returns the empty set.

8

In each iteration of the main loop, the algorithm either
expands the forest F to include more reachable states
(with the hope that this expansion will help produce a
“fail” answer), or refines the partition Σ' (with the hope
that this refinement will help produce a “pass” answer).
The algorithm locates a path from an initial region to
the error region through the abstract procedure, and
then discovers the boundary (the frontier) along this path
between regions which are known to be reachable and a
region which is not known to be reachable. Symbolic
execution along the abstract path to the error region,
similar in spirit to CUTE [4], is then used to expand the
forest F with a test that crosses this frontier. If such a
test cannot be created, we refine the partition Σ' at this
“explored” side of the frontier. Thus, abstract error traces
are used to direct test generation, and the non-existence
of certain kinds of tests is used to guide the refinement
of P'.

Every iteration of DASH first checks for the existence
of a test reaching the error (line 7). If there is such a test,
then ϕ∩F 6= ∅, so the algorithm chooses a state s∈ϕ∩F
and calls the auxiliary function TestForWitness to com-
pute a concrete test that reaches the error. TestForWitness
(line 9) uses the parent relation to generate an error trace
– it starts with a concrete state s and successively looks
up the parent until it finds a concrete state s0 (a root
of F) that belongs to an initial region. TestForWitness(s)
returns the state sequence s0, s1, . . . , sn such that sn = s
and si→si+1 for all 0 ≤ i < n.

If no test to the error exists in the forest F , the algo-
rithm calls GetAbstractTrace (line 12) to find an abstract
error trace τ through the abstract graph. If no such trace
exists, then the current partition Σ' is a proof that P
cannot reach any state in ϕ, and GetAbstractTrace returns
τ = ε. Otherwise, GetAbstractTrace returns the abstract
trace τ = S0, S1, . . . , Sn such that Sn =ϕ. The next step
is to convert this trace into an ordered abstract trace. An
abstract trace S0, S1, . . . , Sn is ordered if the following two
conditions hold:

(1) There exists a frontier (k − 1, k) def=
Frontier(S0, S1, . . . , Sn) such that (a) 0 ≤ k ≤ n,
and (b) Si ∩ F = ∅ for all k ≤ i ≤ n, and
(c) Sj ∩ F 6= ∅ for all 0 ≤ j < k.

(2) There exists a state s ∈ Sk−1 ∩ F such that
Si = Region(parentk−1−i(s)) for all 0 ≤ i < k,
where the abstraction function Region maps
each state s ∈ Σ to the region S ∈ Σ' with
s ∈ S.

We note that whenever there is an abstract error trace,
then there must exist an ordered abstract error trace.
The auxiliary function GetOrderedAbstractTrace (line 16)
converts an arbitrary abstract trace τ into an ordered
abstract trace τo. This works by finding the last region in
the abstract trace that intersects with the forest F , which
we call Sf . The algorithm picks a state in this intersec-
tion and follows the parent relation back to an initial
state. This leads to a concrete trace s0, s1, . . . , sk−1 that

Fig. 9. Refinement split performed by DASH at the
frontier.

ExtendFrontier(τ , P)
Returns:
〈t, true〉, if the frontier can be extended; or
〈ε, ρ〉, if the frontier cannot be extended.
1: (k−1, k) := Frontier(τ)
2: 〈φ1,S, φ2〉 := ExecuteSymbolic(τ, P)
3: t := IsSAT(φ1,S, φ2, P)
4: if t = ε then
5: ρ := RefinePred(S, τ)
6: else
7: ρ := true
8: end if
9: return 〈t, ρ〉

Fig. 10. The auxiliary function ExtendFrontier.

corresponds to an abstract trace S0, S1, . . . Sk−1 where
Sk−1 = Sf . By splicing together this abstract trace and
the portion of the abstract error trace from Sf to Sn, we
obtain an ordered abstract error trace. It is crucial that
the ordered abstract error trace follows a concrete trace
up to the frontier, as this ensures that it is a feasible trace
up to that point.

The algorithm now calls the function ExtendFrontier
(line 17). The function ExtendFrontier, shown in Figure 10,
is the only function in the DASH algorithm that uses a
theorem prover. It takes an ordered trace τo and procedure
P as inputs and returns a pair 〈t, ρ〉, where t is a test and
ρ is a predicate. They can take the following values:
• 〈t, true〉, when t is a test that extends the fron-

tier. The test t is then added to the forest F by
AddTestToForest (line 19), which runs an instru-
mented version of the program to obtain the trace
of concrete states that are added to F .

• 〈ε, ρ〉, when no test that extends the frontier is
possible. In this case, ρ is a suitable refinement
predicate that is used to used to refine the partition
Σ' at the frontier (lines 21–30), resulting in a split of
region Sk−1 (as shown in Figure 9) that eliminates
the spurious abstract error trace τo.

The function ExecuteSymbolic, which is called at
line 2 of ExtendFrontier, performs symbolic execution
on τ using techniques inspired by CUTE [4]. Let τ =
〈S0, S1, . . . , Sn〉, and let (k − 1, k) = Frontier(τ). Exe-
cuteSymbolic returns 〈φ1,S, φ2〉, where φ1 and S are
respectively the path constraint and symbolic memory
map obtained by performing symbolic execution on
the abstract trace 〈S0, S1, . . . , Sk−1〉, and φ2 is the re-
sult of performing symbolic execution on the abstract
trace 〈Sk−1, Sk〉 (not including the region Sk−1) starting
with the symbolic memory map S . ExecuteSymbolic is
described in Figure 11. It first initializes the symbolic
memory map S with v 7→ v0 for every input variable
∗v in the program, where v0 is the initial symbolic

9

ExecuteSymbolic(τ , P)
Returns: 〈φ1,S, φ2〉.
1: (k−1, k) := Frontier(τ = 〈S0, S1, . . . , Sn〉)
2: S := [v 7→ v0 | ∗v ∈ inputs(P)]
3: φ1 := SymbolicEval(S0,S)
4: φ2 := true
5: i := 0
6: while i 6= k−1 do
7: op := λ(Edge(Si, Si+1))
8: match(op)
9: case(∗m = e):

10: S := S+[SymbolicEval(m,S) 7→SymbolicEval(e,S)]
11: case(if e goto l):
12: φ1 := φ1 ∧ SymbolicEval(e,S)
13: i := i+ 1
14: φ1 := φ1 ∧ SymbolicEval(Si,S)
15: end while
16: op := λ(Edge(Sk−1, Sk))
17: match(op)
18: case(∗m = e):
19: φ2 := φ2∧
20: ∗(SymbolicEval(m,S)) = SymbolicEval(e,S)
21: S′ := S + [SymbolicEval(m,S) 7→ SymbolicEval(e,S)]
22: case(if e goto l):
23: φ2 := φ2 ∧ SymbolicEval(e,S)
24: S′ := S
25: φ2 := φ2 ∧ SymbolicEval(Sk,S′)
26: return 〈φ1,S, φ2〉

Fig. 11. The auxiliary function ExecuteSymbolic.

value for ∗v (line 2 in Figure 11) and performs symbolic
execution in order to compute φ1 and φ2. The func-
tion SymbolicEval(e,S) evaluates the expression e with
respect to values from the symbolic memory S.

ExtendFrontier calls the function IsSAT (line 3 in Fig-
ure 10) that checks whether µ=φ1∧S∧φ2 is satisfiable1

by making a call to a theorem prover. If µ is satisfiable,
IsSAT uses the satisfying assignment/model to generate
a test t for P that extends the frontier, otherwise it sets
t = ε. If it is not possible to extend the frontier (that
is, t = ε as shown in line 4), then ExtendFrontier calls
RefinePred (line 5) which returns a predicate ρ that is
a suitable candidate for refining Σ' at Sk−1 according
to the template in Figure 9. It is useful to note that
RefinePred makes no theorem prover calls in order to
compute ρ.

4.2 Suitable Predicates
If we cannot drive a test past the frontier, then Re-
finePred should return a predicate that is “good” in some
sense. We seek a predicate ρ that is suitable to perform
a refinement as shown in Figure 9. We require such a
predicate ρ, to satisfy the two conditions formally stated
below.

Definition 1 (Suitable predicate): Let τ be an abstract
error trace and let (S, S′) be its frontier. A predicate ρ
is said to be suitable with respect to τ if: (1) all possible
concrete states obtained by executing τ up to the frontier
belong to the region (S∧¬ρ), and (2) there is no transition
from any state in (S ∧ ¬ρ) to a state in S′.
A refinement in the style of Figure 9 makes progress in
the sense that it eliminates the current abstract trace
S0, S1, . . . , Sk−1, Sk. This is because every state that
can be reached by the prefix S0, S1, . . . , Sk−1 needs to
be in the region (Sk−1 ∧¬ρ) and there is no abstract

1. Every entry in S is looked upon as an equality predicate here.

transition from the region (Sk−1∧¬ρ) to Sk, by the above
definition. We call this template-based refinement since it
is done without any calls to a theorem prover after
computing a suitable predicate. Given two abstract error
traces τ = 〈S0, S1, . . . , Sn〉 and τ ′= 〈T0, T1, . . . , Tn〉 of the
same length, we say that τ @ τ ′ if either of the following
conditions is true.

(a) ∀0≤i≤nTi ⊆ Si, and ∃k ∈ [0, n] such that Tk ⊂
Sk.

(b) Let (x, x + 1) = Frontier(τ) and (y, y + 1) =
Frontier(τ ′), then ∀0≤i≤nTi = Si, and y > x.

Essentially, this means that τ @ τ ′ if τ ′ is a strictly
“better” trace, either because the frontier in τ ′ has been
pushed forward or because at least one region in τ ′ holds
strictly fewer states. This is formalized by Definition 2:

Definition 2 (Progress): Let Γ = 〈τ0, τ1, . . .〉 be a se-
quence of abstract error traces examined by DASH. Then
we say that DASH makes progress if there do not exist
i and j such that i < j and τj @ τi.

Theorem 1: If a suitable predicate for an abstract error
trace τ is used to perform refinement, then the DASH
algorithm makes progress.

Proof: Let τ = 〈S0, S1, . . . , Sn〉. By definition (see
Figure 9), it follows that a suitable predicate ρ with
respect to τ would eliminate the edge (Sk−1, Sk) in
a sound manner by splitting Sk−1 into two regions,
Sk−1 ∧ ρ and Sk ∧ ρ. Since all concrete states in Sk−1

that can be obtained by traversing the abstract error trace
belong to the region Sk−1∧¬ρ, and the edge (Sk−1∧ρ, Sk)
does not exist, it follows that Definition 2 is satisfied if
a refinement is performed on any of the states. Alterna-
tively, if a test is generated, then the second condition in
Definition 2 will be satisfied, thus proving the theorem.

Corollary 2: A suitable predicate ensures that the re-
finement is sound.

Theorem 1 allows us to perform template-based refine-
ment (as shown in Figure 9) without any calls to a
theorem prover after computing a suitable predicate.
Next, we describe how the auxiliary function RefinePred
computes a suitable predicate.

4.2.1 Computing Suitable Predicates
For a statement op ∈ Stmts and a predicate φ, let
WP(op, φ) denote the weakest precondition [8] of φ with
respect to statement op. WP(op, φ) is defined as the
weakest predicate whose truth before op implies the
truth of φ after op executes. The weakest precondition
WP(x = e, φ) is the predicate obtained by replacing all
occurrences of x in φ (denoted φ[e/x]). For example,
WP(x = x+1, x < 1) = (x+1) < 1 = (x < 0). However,
in the case of pointers, WP(op, φ) is not necessarily
φ[e/x]. For example, WP(x = x + 1, ∗p + ∗q < 1) is not
∗p + ∗q < 1, if either ∗p or ∗q or both alias x. In
order to handle this, if the predicate φ mentions k
locations2 (say y1, y2, . . . , yk), then WP(x = e, φ) would

2. A location is either a variable, a structure field access from a
location, or a dereference of a location.

10

RefinePred(S, τ)
Returns: a suitable predicate ρ.
1: (k−1, k) := Frontier(τ = 〈S0, S1, . . . , Sm〉)
2: op := λ(Edge(Sk−1, Sk))
3: α := Aliases(S, op, Sk)
4: return WPα(op, Sk)

Fig. 12. Computing suitable predicates.

have 2k disjuncts, with each disjunct corresponding to
one possible alias condition of the k locations with x [6].
Therefore, WP(x = x + 1, ∗p+ ∗q < 1) has 4 disjuncts as
follows:

(&x=p ∧&x=q ∧ 2x<−1) ∨
(&x 6=p ∧&x=q ∧ ∗p+ x< 0) ∨
(&x=p ∧&x 6=q ∧ x+ ∗q< 0) ∨
(&x 6=p ∧&x 6=q ∧ ∗p+ ∗q< 1)

Typically, a whole-program may-alias analysis is used
to improve the precision (that is, prune the number of
disjuncts) of the weakest precondition and the outcome
of this analysis largely influences the performance of
tools like SLAM. However, as motivated by the example
in Figure 3, imprecisions in a whole-program may-alias
analysis are ineffective in pruning the disjuncts. DASH
takes an alternate approach. It considers only the aliasing
α that can happen along the current abstract trace, and
computes the weakest precondition specialized to that
aliasing condition, as shown by the function RefinePred
in Figure 12. The aliasing condition α is allowed to have
disjunctions, though this happens rarely in practice.

We first define the projection of the weakest precon-
dition with respect to alias condition α as follows:

WP↓α(op, φ)) = α ∧WP(op, φ)

It is important to note that the α computed by the
auxiliary function Aliases(S, op, Sk) consists of only those
aliasing conditions in S that hold between locations that
occur in op and Sk. For efficiency, WP↓α(op, φ)) can be
computed by only considering the aliasing condition α.
For example, if α = (&x 6=p ∧&x=q) we have that

WP↓α (x = x + 1, ∗p+ ∗q < 1) = (&x 6=p∧&x=q ∧x< 0)

The refinement predicate computed by RefinePred is

WPα(op, φ2) def= ¬(α ∧ ¬WP↓α(op, φ2))

Next, we show that such a predicate satisfies the condi-
tions for a suitable predicate.

Theorem 3: The predicate WPα(op, φ2) computed by
the auxiliary function RefinePred is a suitable predicate.

Proof: There are two parts of this proof for the two
requirements of Definition 1. Let C be the set of concrete
states obtained by executing the ordered trace up to
the frontier. Any concrete state c ∈ C must satisfy the
existing predicate on the region Sk−1 as well as the alias
relations defined by α. Since it is not possible to generate
a test that extends the frontier, it must be the case that
∀c ∈ C, c 6∈ WP↓α (op, φ2) (since every path results in
exactly one α). This implies that ∀c ∈ C, c ∈ (α ∧ ¬WP↓α
(op, φ2)). Therefore C ∩ ¬(α ∧ ¬WP↓α (op, φ2)) = ∅, and

so the predicate WPα(op, φ2) satisfies the first half of the
definition.

The second part of Definition 1 requires that no state
in Sk−1 ∧ ¬WPα(op, φ2) have a transition to a state in
Sk. Every state that can make this transition satisfies
WP(op, φ2) by the definition of weakest precondition.
Because every state in Sk−1 ∧ ¬WPα(op, φ2) must also
satisfy the alias relations defined by α, any state in
Sk−1∧¬WPα(op, φ2) that can transition to Sk must satisfy
WP↓α(op, φ2) specifically. Because every state satisfying
¬WPα(op, φ2) also must not satisfy WP↓α (op, φ2), no
states with a transition to Sk can exist, and therefore
WPα(op, φ2) is a suitable predicate.

4.2.2 Extensions
We note that while WP or interpolants [10] are other
possible choices for a suitable predicate for the refine-
ment shown in Figure 9, the predicate computed by
both these techniques contain an exponential number of
disjuncts in the presence of aliasing. Thus, the use of
WPα avoids an exponential number of disjuncts when
compared to other approaches that use WP such as [5]
and [22]. Though we consider only WP, we believe
that a similar optimization to reduce the number of
aliasing possibilities using tests can also be done with
interpolants.

Even though our current intermediate form for C
does not support arrays, the DASH algorithm easily
generalizes to handle arrays. With arrays, the aliasing
condition α that results from symbolic execution of the
abstract trace can have disjuncts, since an assignment
that accesses an array using an index requires a case
analysis over the values taken by the index. However,
the calculation of suitable predicates using the WPα op-
erator works even if the alias condition α has disjuncts,
and the guarantees offered by Theorem 3 continue to
hold.

4.3 Soundness and Complexity
In this section we will present theoretical results that
characterize the correctness and complexity of the DASH
algorithm. The first lemma states that DASH is sound –
that is, every error and proof found by DASH is a valid
one.

Lemma 1 (Soundness): If DASH terminates on (P,ϕ),
then either of the following is true:
• If DASH returns (“pass”, Σ'), then Σ' is a proof

that P cannot reach ϕ.
• If DASH returns (“fail”, t), then t is a test for P that

violates ϕ.
Proof: If DASH returns (“pass”, Σ'), it follows from

Corollary 2 and Theorem 3 that P' = 〈Σ', σI',→'〉
simulates the program P with respect to the property
ϕ and thus is a proof that P cannot reach ϕ. On the
other hand, since DASH returns (“fail”, t) only if there is
a concrete witness in the region ϕ, t is a test that violates
ϕ.

11

DASH-MAIN(P , ϕ)
Returns:
(“fail”, t), where t is an error trace of P reaching ϕ; or
(“pass”, Σ'), where Σ' is a proof that P cannot reach ϕ.

1: let 〈P0, P1, . . . , Pn〉 = P in
2: DASH(P0 = 〈Σ0, σ

I
0 ,→0〉, ϕ)

Fig. 13. The DASH algorithm for programs with multiple
procedures.

Though we cannot bound the number of iterations of
DASH we can bound the number of theorem prover calls
made in each iteration.

Lemma 2 (Complexity): The DASH algorithm makes
precisely one theorem prover call per iteration.

Proof: During a DASH iteration, a test generation
entails one theorem prover call (call to IsSat in line 3
of the auxiliary function ExtendFrontier). If a test that
extends the frontier is not possible, then generating a
suitable predicate for refinement does not involve a
theorem prover call.

We note that the above theorem also holds for multiple
procedures. In programs with multiple procedures, if
the frontier happens to be at a procedure call, DASH
is recursively invoked on the called procedure, and this
recursive invocation can result in several iterations, each
entailing one theorem prover call. Next, we discuss the
how DASH can be extended to handle multiple proce-
dures.

4.4 Handling Programs with Procedures
We will assume without loss of generality that the

property ϕ that we wish to check is only associated
with the main procedure P0 in the program P . There-
fore, DASH-MAIN(P= 〈P0, P1, . . . , Pn〉, ϕ) (shown in
Figure 13) calls the function DASH from Figure 8 on
the property checking instance (P0, ϕ). As in the single
procedure case, we maintain a forest F and an abstrac-
tion P' for every procedure P in the program. The
interprocedural analysis differs from the intraprocedural
algorithm described earlier only in the definition of the
auxiliary function ExtendFrontier. The modified version
of ExtendFrontier is shown in Figure 14. Informally, the
interprocedural algorithm works by recursively invoking
DASH whenever the standard algorithm dictates that the
frontier must be extended across a call-return edge of
the graph. The results of recursive call, combined with
information from the calling context tell us whether or
not there exists a test that can extend the frontier. If this
is not possible, then the proof returned by the recursive
DASH call is used to compute a suitable predicate.

Specifically, the auxiliary function ExtendFrontier
makes a call to DASH at frontiers that correspond to
call-return edges. ExtendFrontier first calls the auxiliary
function GetWholeAbstractTrace (line 1). GetWholeAb-
stractTrace takes an ordered abstract error trace τ =
〈S0, S1, . . . , Sn〉 and forest F as input, and returns an
“expanded” whole abstract error trace τw. Essentially, τw
is the abstract trace τ with all call-return edges up to its
frontier replaced with the abstract trace traversed in the

ExtendFrontier(τ , P)
Returns:
(t, true), if the frontier can be extended; or
(ε, ρ), if the frontier cannot be extended.

1: τw=〈S0, S1, . . . , Sn〉 := GetWholeAbstractTrace(τ, F)
2: (k−1, k) := Frontier(τw)
3: 〈φ1,S, φ2〉 := ExecuteSymbolic(τw, P)
4: if Edge(Sk−1, Sk) ∈ CallReturn(E) then
5: let 〈Σ, σI ,→〉 = GetProc(Edge(Sk−1, Sk)) in
6: φ := InputConstraints(S)
7: φ′ := Sk[e/x]
8: 〈r,m〉 := DASH(〈Σ, σI∧φ,→〉,¬φ′)
9: if r = “fail” then

10: t := m
11: ρ := true
12: else
13: ρ := ComputeRefinePred(m)
14: t := ε
15: end if
16: else
17: t := IsSAT(φ1,S, φ2, P)
18: if t = ε then
19: ρ := RefinePred(S, τw)
20: else
21: ρ := true
22: end if
23: end if
24: return 〈t, ρ〉

Fig. 14. The auxiliary function ExtendFrontier for interpro-
cedural analysis.

called function (and this works in a recursive manner),
so that it is really a trace of every abstract program point
through which the test passed. If Edge(Si, Si+1) is a call-
return edge that occurs before the frontier, GetWholeAb-
stractTrace runs a test t (obtained from the concrete
witness in Si) on the called procedure GetProc(e) and
replaces Edge(Si, Si+1) with the sequence of regions
corresponding to the test t.

The function ExecuteSymbolic (line 3) performs sym-
bolic execution on the whole abstract error trace τw as
described in Figure 11. If the frontier corresponds to a
call-return edge (line 5) with a call to procedure Q =
〈Σ, σI ,→〉, ExtendFrontier calls DASH on the property
checking instance (〈Σ, σ ∧ φ,→〉,¬φ′). The predicate φ
corresponds to the constraints on Q’s input variables
which are computed directly from the symbolic memory
S (by the auxiliary function InputConstraints at line 7),
and φ′ = Sk[e/x], where e is the returned expression
in Q and x is the variable in the caller P that stores
the return value. Note that because both φ and φ′ may
mention local variables with the same names as variables
in the called function, either the identifiers in these
predicates or the identifiers in the called function need
to be varied appropriately at the point where DASH
is called recursively. While this must be done carefully
so that AddTestToForest can correctly match up concrete
states with abstract states, these details are omitted here.

If DASH(〈Σ, σI ∧ φ,→〉,¬φ′) returns (“fail”, t), then
we know that the frontier can be extended by the test
t; otherwise m corresponds to a proof that the frontier
cannot be extended across the frontier. It can be easily
seen that the predicate φ is a suitable predicate and
this is analogous to using the strongest postcondition
for refinement. On the other hand, a suitable predicate
analogous to the intraprocedural WPα predicate can be

12

Fig. 15. Architecture of YOGI.

Fig. 16. An example SLIC specification.

gleaned from the way DASH splits the initial region.
This predicate is computed by the auxiliary function
ComputeRefinePred in line 13 which takes the proof m
computed by DASH and returns a suitable predicate ρ.
Specifically, ComputeRefinePred(m) is defined as follows.

ComputeRefinePred(m) def= ¬(
∨
ρi)

where each ρi is a predicate in the proof m used to
split the initial region σI ∧ φ. It can be shown that
ComputeRefinePred returns a suitable predicate.

If a procedure needs to be recursively invoked in
order to reach an error condition, DASH itself will be
recursively invoked, substituting appropriate values for
concrete parameters, so that symbolic execution will
eventually ’bottom out,’ in the base case of the recur-
sion. On the other hand, if the recursive execution of
a procedures is not directly related to the error, the
algorithm will generate test cases that pass right though
the recursive invocations, at which point the call will
be on the near side of the frontier. The rest of the
interprocedural algorithm is identical to DASH.

5 EVALUATION

We have implemented DASH in a tool called YOGI
which has been integrated with Microsoft’s Static Driver
Verifier (SDV) framework. As shown in Figure 15, YOGI
takes two inputs: (1) a C program, and (2) a safety prop-
erty specified in the SLIC specification language [24].
A sample SLIC specification for a locking protocol

(KeAcquireSpinLock and KeReleaseSpinLock oc-
cur in strict alternation) is shown in Figure 16. YOGI uses
SLAM’s front-end (called slamcl) to parse C programs
and SLAM’s property instrumentor (called slicc) to in-
strument the property into the program. The resulting
program with the property instrumented is in SLAM’s
internal binary format called li. We have developed a
translator called LI2YOGI that converts the li format to
YOGI’s intermediate form called yogi-ir. The yogi-ir is a
textual format that represents the program at the level
of basic blocks with instructions. Each instruction is
one of three types: an assignment, assume statement or
a procedure call. Once a program has been converted
to the yogi-ir format, it is read by the YOGIPARSER to
produce an internal interprocedural control flow graph.
SLAM’s front end merges arrays to a single representa-
tive location – every access a[i] is approximated to *a
ignoring the value of i. Consequently, YOGI also inherits
this approximation.

The two main components of YOGI are: (1) YSIM,
a simulator which can perform both concrete execu-
tion with concrete values and symbolic execution, and
(2) YABSMAN, an abstraction manager, which manages
proofs.

The YSIM simulator code is polymorphic over the type
of the values it operates. Thus, the same simulation code
does both concrete and symbolic execution. During con-
crete execution, the simulator uses a model of memory
where concrete values of appropriate type are stored
in locations. During symbolic execution, the simulator
stores symbols and formulas in locations. It uses the Z3
theorem prover [25] to reason about consistency of the
formulas and to generate test cases as satisfiable models
of formulas. All predicates are propositional logic for-
mulae defined over linear arithmetic and uninterpreted
functions stored in Z3’s internal representation. With
these assumptions, the logic is decidable and therefore
every satisfiability/validity query to the theorem prover
results in either a “yes” or “no” answer. The YABSMAN
abstraction manager maintains a region graph abstrac-
tion of the program.

The implementation of DASH is very close to the de-
scription in Section 4 with some additional optimizations
described below.

(a) YSIM keeps track of which input locations are
“touched” when symbolically executing an ab-
stract path so that only these touched locations
are initialized before running a test. This simple
optimization greatly reduces the time to set up
a test especially for large programs

(b) When faced with an if-branch in a program,
DASH will perform an inexpensive test to see
whether the WPα of a weaker predicate, one
that ignores the branch condition, still satisfies
the template described in Figure 9. This can be
done by evaluation, and does not require a the-
orem prover call. The effect of this optimization
is that we avoid getting “stuck” in irrelevant

13

Fig. 17. Scatter plot of the relative runtimes of SLAM and
YOGI on 95 C programs in SLAM’s regression suite.

loops. We have left the consideration of more
thorough generalization techniques for future
work.

Implementing the interprocedural DASH algorithm in
the presence of pointers was non-trivial. Each invocation
of the DASH algorithm carries its own abstract graph,
as well as a logical memory map representing the state
of memory when the function was called. The top-level
invocation of DASH assumes that there is no aliasing
in this map, but recursive calls may begin with aliasing
constraints introduced during the execution of the pro-
gram. When a recursive call begins, a fresh abstraction
is generated from the control flow graph of that function
and is augmented with initial and error regions as
described in Section 4.4. We did two sets of evaluations
to compare YOGI and SLAM3.
Device driver benchmarks. We have tested YOGI with
SDV’s integration pass suite which consists of 69 Win-
dows Vista device drivers and 85 properties, a total of
5865 driver-property pairs. The largest driver in this
suite has over 30K lines of code and the cumulative size
of all drivers is over 300K lines of code. Currently, YOGI
runs on 95% of the runs of the integration test pass and it
is able to prove properties as well as find bugs in drivers.
There are 129 runs where SLAM either times or spaces
out where YOGI is able to give a result. The total time
taken by YOGI on all the 5865 runs is about 32 hours on
a 4 core machine, whereas SLAM takes around 69 hours.

A comparison of YOGI with SLAM on 16 representative
drivers is shown in Table 1. Every row of this table shows
the driver, its number of lines of code, the number of
properties checked and the time (in minutes) taken by
SLAM and YOGI along with the total number of iterations
and the number of time-outs (set to 30 minutes). In
many of the cases where SLAM either times out or gives
up due to pointer aliasing, YOGI is able to prove that
the program satisfies the property or find a test that
witnesses the violation very efficiently. This is due to
the fact that the refinement done by YOGI using WPα
considers only the aliasing possibilites that occur along
test executions. In fact, the simplified code snippet in
Figure 1 in Section 2 was motivated by looking at device

3. We used SDV’s latest version of SLAM that is shipped with
Microsoft Windows Vista.

driver code and simplifying it for presentation. In the
other runs where SLAM produces a result (proof/bug),
YOGI also reports an identical result. As seen in the table,
even though YOGI takes several more iterations when
compared to SLAM, each iteration is very efficient, and
the overall runtime of YOGI is smaller than SLAM. This
is because in each iteration, SLAM makes a large number
of theorem prover calls to compute the boolean program
abstraction, whereas DASH makes exactly one theorem
prover call per iteration. There are also some checks
where we observe that SLAM is faster than YOGI. It turns
out that for all these checks, the proof can be computed
immediately by abstraction and therefore SLAM is able
to efficiently compute it. On the other hand, YOGI incurs
additional overheads due to test execution.
SLAM regression suite. We ran YOGI on 95 C programs
in SLAM’s regression suite. These are simple C programs
which contain common features of device drivers where
the average size per program is 100 lines of code. A
scatter plot of the relative runtimes of SLAM and YOGI
can be seen in Figure 17. SLAM and YOGI gave identical
outputs (that is, pass/fail) on each of the 95 programs.
Note that the plot has SLAM runtime in a log scale, and
the curve y = x is shown. Every point to the right of
the curve is a case where YOGI is faster than SLAM. The
total time taken by SLAM for all the 95 programs (put
together) is 20 minutes, whereas YOGI finishes all the
95 programs in 17 seconds. With test caching enabled
(where tests are reused across runs of YOGI), YOGI
finishes all the 95 programs in 4 seconds.

6 CONCLUSION

We believe that light-weight approaches like DASH en-
able application of proof techniques to a larger class of
programs. Our eventual goal is the following: whenever
we can run a program, instrument a program to observe
states, and do light-weight symbolic execution, we want
to be able to do proofs! We believe that DASH has all the
concepts needed to achieve this goal.

DASH handles only sequential programs, and checks
only safety properties. However, recent work has built
on checkers like SLAM to do concurrency analysis with
bounded number of context switches [26], and check
termination properties [27]. By improving the scalability
of the core proof engines (like SLAM), we believe that
DASH can also improve the scalability of these tools for
concurrency and termination analysis.

We are continuing to improve scalability of YOGI
in several ways. We have come up with notions of
summarizing the results of analyzing a procedure using
both concrete summaries (’must’ summaries) and ab-
stract summaries (or ’may’ summaries). Initial empirical
results show another order of magnitude improvement
in YOGI’s performance using such summaries [18]. In
future work, we plan to extend YOGI to handle arrays
(see Section 4.2.2). We also plan to improve scalability
even more by using approximate symbolic execution,

14

Program Lines Properties SLAM YOGI
Time-outs Iterations Time (min) Time-outs Iterations Time (min)

parport 34196 19 1 577 91.2 0 8449 26.1
serial1 32385 21 3 288 142.4 0 16716 21.5
serial 31861 21 3 244 203.9 0 20135 28.1
fdc_fail 9251 50 0 676 117.6 0 9675 8
kbdclass1 7426 38 2 574 124.9 0 31846 115
kbdclass 7132 36 2 552 125.5 0 26572 90.4
serenum 6011 38 1 327 95.6 0 7198 10.9
pscr 5680 37 0 564 55 0 14126 26.4
modem 3467 19 0 246 18 0 9565 22.3
1394Vdev 2757 22 2 434 90.7 0 52240 72.9
1394Diag 2745 23 3 430 121.4 0 45031 68.8
diskperf 2351 31 0 224 36.8 1 16948 100
incomplete1 1558 29 0 120 16 0 6305 6.3
toastmon1 1539 32 0 119 13.5 0 7853 8.4
toastmon 1505 32 0 119 16.6 0 7619 7.6
daytona 565 29 1 514 106.9 0 14938 77.4

TABLE 1
Empirical evaluation of YOGI on 16 device drivers.

and by persisting may summaries and must summaries
for each procedure and reusing them across multiple
runs of YOGI.

ACKNOWLEDGMENTS

The authors would like to thank Thomas Ball, Patrice
Godefroid, Akash Lal, James Larus, Rustan Leino,
Kanika Nema, G. Ramalingam and Thomas Reps for
comments on earlier drafts of this paper. They would
also like to thank Nikolaj Bjorner and Leonardo de
Moura for providing the Z3 theorem prover used by
YOGI.

REFERENCES

[1] E. W. Dijkstra, “The humble programmer,” Commun. ACM, vol. 15,
no. 10, pp. 859–866, 1972.

[2] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed auto-
mated random testing.” in PLDI ’05: Programming Language Design
and Implementation. ACM Press, 2005, pp. 213–223.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in ACM CCS,
2006.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in FSE ’05: Foundations of Software Engineering.
ACM Press, 2005, pp. 263–272.

[5] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani, “SYNERGY: A new algorithm for property checking,”
in FSE ’06: Foundations of Software Engineering. ACM Press, 2006,
pp. 117–127.

[6] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in PLDI ’01: Programming
Language Design and Implementation. ACM Press, 2001, pp. 203–
213.

[7] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
abstraction,” in POPL ’02: Principles of Programming Languages.
ACM Press, 2002, pp. 58–70.

[8] E. W. Dijkstra, A Discipline of Programming. Prentice Hall, 1997.
[9] T. Ball and S. K. Rajamani, “Automatically validating temporal

safety properties of interfaces,” in SPIN ’01: SPIN workshop on
Model checking of Software. Springer-Verlag New York, Inc., 2001,
pp. 103–122.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan,
“Abstractions from proofs,” in POPL ’04: Principles of Programming
Languages. ACM Press, 2004, pp. 232–244.

[11] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons,
“Proofs from tests,” in ISSTA ’08: International Symposium on
Software Testing and Analysis. ACM Press, 2008, pp. 103–122.

[12] P. Godefroid and N. Klarlund, “Software model checking: Search-
ing for computations in the abstract or the concrete,” in IFM ’05:
Integrated Formal Methods, 2005, pp. 20–32.

[13] E. Gunter and D. Peled, “Model checking, testing and verification
working together,” Form. Asp. Comput., vol. 17, no. 2, pp. 201–221,
2005.

[14] G. Yorsh, T. Ball, and M. Sagiv, “Testing, abstraction, theorem
proving: better together!” in ISSTA ’06: International Symposium
on Software Testing and Analysis. ACM Press, 2006, pp. 145–156.

[15] D. Kroening, A. Groce, and E. M. Clarke, “Counterexample
guided abstraction refinement via program execution,” in ICFEM
’04: International Conference on Formal Engineering Methods, ser.
Lecture Notes in Computer Science, 2004, pp. 224–238.

[16] P. Godefroid, “Compositional dynamic test generation,” in POPL
’07: Principles of Programming Languages. ACM Press, 2007, pp.
47–54.

[17] R. Majumdar and K. Sen, “LATEST : Lazy dynamic test input
generation,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2007-36, March 2007. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-
2007-36.html

[18] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali, “Com-
positional may-must program analysis: Unleashing the power of
alternation,” in POPL ’10: Principles of Programming Languages.
ACM Press, 2010.

[19] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV ’00:
Computer Aided Verification. Springer-Verlag, 2000, pp. 154–169.

[20] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe, “Extended
static checking,” Compaq Systems Research Center, Tech. Rep.
Research Report 159, December 1998.

[21] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “”Boogie: A modular reusable verifier for object-oriented
programs”,” in FMCO ’05: Formal Methods for Components and
Objects, ser. LNCS 4111. Springer-Verlag, pp. 364–387.

[22] K. S. Namjoshi and R. P. Kurshan, “Syntactic program transfor-
mations for automatic abstraction,” in CAV ’00: Computer Aided
Verification. Springer-Verlag, 2000, pp. 435–449.

[23] T.Ball, “Personal communication.”
[24] T. Ball and S. K. Rajamani, “SLIC: A specification language for

interface checking of C,” Microsoft Research, Tech. Rep. MSR-
TR-2001-21, 2001.

[25] L. de Moura and N. Bjorner, “Z3: An efficient smt solver,” in
TACAS ’08: Tools and Algorithms for the Construction and Analysis
of Systems, 2008.

[26] S. Qadeer and D. Wu, “KISS: Keep it simple and sequential,” in
PLDI ’04: Programming Language Design and Implementation. ACM,
2004, pp. 14–24.

[27] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs
for systems code,” in PLDI ’06: Programming Language Design and
Implementation. ACM, 2006, pp. 415–426.

