
OpenNWA: A Nested-Word Automaton Library⋆

Evan Driscoll1, Aditya Thakur1, and Thomas Reps1,2

1Computer Sciences Department, University of Wisconsin – Madison
{driscoll,adi,reps}@cs.wisc.edu

2GrammaTech, Inc., Ithaca, NY

Abstract. Nested-word automata (NWAs) are a language formalism
that helps bridge the gap between finite-state automata and push-
down automata. NWAs can express some context-free properties, such as
parenthesis matching, yet retain all the desirable closure characteristics
of finite-state automata.

This paper describes OpenNWA, a C++ library for working with
NWAs. The library provides the expected automata-theoretic operations,
such as intersection, determinization, and complementation. It is pack-
aged with WALi—the W eighted Automaton Library—and interoperates
closely with the weighted pushdown system portions of WALi.

1 Introduction

Many problems in computer science are solved by modeling a component as
an automaton. Traditionally, this means either confronting several undecidable
problems that arise with the use of pushdown automata or giving up expressivity,
and usually precision, by using finite-state automata. Recently, the development
of nested word automata (NWAs) and related formalisms [2, 3] has revealed a
fertile middle ground between these two extremes. NWAs are powerful enough
to express some “context-free”-style properties, such as parenthesis matching,
and yet retain the decidability properties that make it convenient to work with
regular languages. In particular, NWAs and their languages are closed under
operations such as intersection and complementation. NWAs have been applied
in areas such as modeling programs and XML documents. When modeling pro-
grams, NWAs can eliminate spurious data flows along paths with mismatched
calls and returns. In XML documents, NWAs can model the matching between
opening and closing tags.

We have created a C++ implementation of NWAs, called OpenNWA. Open-
NWA is packaged with the W eighted Automata Library, WALi [7]. WALi also
provides implementations for weighted finite-state automata and weighted push-
down systems (WPDSs). The OpenNWA library
– implements (in the terminology of [3]) linearly-accepting, weakly-hierarchical

NWAs, along with standard automata-theoretic operations. (See §3.1.)

⋆

Supported by NSF under grants CCF-{0540955, 0810053, 0904371}; by ONR under grants
N00014-{09-1-0510, 10-M-0251}; by ARL under grant W911NF-09-1-0413; by AFRL under grants
FA9550-09-1-0279 and FA8650-10-C-7088; and by DARPA under cooperative agreement HR0011-
12-2-0012. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the sponsoring agencies.



– is extensible via a mechanism that allows the user to attach arbitrary client
information to each node in the automaton. (See §3.2.)

– inter-operates with WALi’s WPDS library and allows the user to issue
queries about an NWA’s configuration space. (See §3.3.)

– provides utilities for operating on a textual NWA format [5, §5].
– provides extensive documentation [5] and a test suite.

OpenNWA is currently used by three projects [11, 4, 6]; see §4. OpenNWA is
available at http://research.cs.wisc.edu/wpis/OpenNWA.

2 NWAs

This section describes nested-word automata [2] and related terms at an intuitive
level, and gives an example of how they are used in program analysis. For the
formal definitions that we use, see our technical report [5, App. A].

A nested word is an ordinary (linear) string of symbols over some alphabet
Σ paired with a nesting relation. The nesting relation describes a hierarchi-
cal relation between input positions, for instance between matched parentheses.
Graphically, a nested word can be depicted

a b c d e f g has illustrated to the right. In this image,
following just the horizontal arrows illustrates the linear word, while the curved
edges (“nesting edges”) indicate positions that are related by the nesting rela-
tion. For a nesting relation to be valid, nesting edges must only point forward
in the word and may not share a position or cross.

Positions in the word that appear at the left end of a nesting edge are called
call positions, those that appear at the right end are called return positions,
and the remaining are internal positions. It is possible to have pending calls and
returns, which are not matched within the word itself. For a given return, the
source of the incoming nesting edge is called that return’s call predecessor.

Nested-word automata (NWAs) are a generalization of ordinary finite-state
automata (FA). An NWA’s transitions are split into three sets—call transitions,
internal transitions, and return transitions. Call and internal transitions are
defined the same as transitions in ordinary FAs, while return transitions also
have a call-predecessor state as an additional element.

To understand how an NWA works, consider first the case of an ordinary
FA M . We can think of M ’s operation as labeling each edge in the input word
with the state that M is in after reading the symbol

a b c d e
q0 q1 q2

at that edge’s source. For instance, shown to the right
is a partial run. To find the next state, M looks for a transition out of q2 with
the symbol c—say with a target of q3—and labels the next edge with q3.

The operation of an NWA proceeds in a fashion similar to a standard FA,
except that the machine also labels the nesting edges. When the NWA reads an
internal position, it chooses a transition and labels the next linear edge the same
way an FA would. When the NWA reads a call position, it picks a matching call
transition and labels the next linear edge in the same way, but also labels the
outgoing nesting edge with the state that the NWA is leaving. When the NWA
reads a return position, it looks not only at the preceeding linear state but also
at the state on the incoming nesting edge. It then chooses a return transition

2



1 void main() {
2 f = factorial(5);
3 printf("%d\n", f);

4 }

5 int factorial(int n) {
6 if (n == 0)

7 return 1;
8 f = factorial(n-1);
9 return n * f;

10 }

A

B

C

D

E

F G

H

K

1 2 6 6

7
10 (B)

8

9

10 (G)

3

1 2 6 8 6 7 10 9 10 3

G

B

A B E G E F K H K C D

Fig. 1. An example program, corresponding NWA, and accepted word. State labels
are arbitrary; transition symbols give the line number of the corresponding statement.
Some nodes are elided. Dotted lines indicate call transitions, and dashed lines are return
transitions. The state in parentheses on a return transition is the call predecessor.

that matches both, and labels the next linear edge with the target state. An
example NWA run is shown in Fig. 1.

OpenNWA supports ε internal transitions, which operate in an analogous way
to ε rules in ordinary FAs. It also supports something we call wild transitions,
which match any single symbol. Wilds can appear on any transition type.

Example 1. NWAs can be used to encode the interprocedural control-flow graph
(ICFG) of a program. Intraprocedural ICFG edges become internal transitions,
interprocedural call edges become call transitions, and interprocedural return
edges become return transitions. For an ICFG return edge (exit-site, return-site),
we use the call site that corresponds to return-site in the call-predecessor position
of the NWA’s transition. The symbols on a transition depend on the application,
but frequently are the corresponding statement.

An example program, the corresponding NWA, and an example word ac-
cepted by that NWA are shown in Fig. 1. Using an NWA allows us to exclude
paths such as 1–2–5–6–7–8–9–... that do not follow a matched path of calls and
returns. Fewer paths can allow a client analysis to obtain increased precision.

3 The OpenNWA library

OpenNWA provides a C++ class called NWA for representing NWAs. For informa-
tion about constructing NWAs and actual API information, see the OpenNWA
documentation [5]. In this section, we briefly describe some things a user can do
with an NWA (or NWAs) once it is built.

3.1 Automata-theoretic operations

As mentioned in §1, OpenNWA supports most automata-theoretic operations:
– intersection
– union
– Kleene star

– reversal
– concatenation
– determination

– complement
– emptiness checking
– example word generation

For the most part, we use Alur and Madhusudan’s algorithms [2, 3]; however we
note three exceptions. First, we implemented emptiness checking and example
generation using WPDSs, discussed below. Second, we found and corrected a

3



minor error in Kleene star [5, §6.4]. Third, we expressed Alur and Madhusudan’s
determinization algorithm using relational operators [5, App. B].

OpenNWA supports determining whether an NWA’s language is empty, and
if it is not, OpenNWA can return an arbitrary word from the NWA’s language.
It is also possible to ask specifically for a shortest accepted word. The library
performs these operations by converting the NWA into a WPDS and running a
post∗ query from the set of initial configurations (see §3.3). To find an example
word, OpenNWA uses a witness-tracing version of post∗ [10, §3.2.1], and extracts
the word from the resulting witness. For the shortest word, we simply use weights
that track the length of the path from the initial state.

The ability to obtain an example word is important in program analysis. It
can show the end user of an analysis tool a program trace that may violate a
property. Moreover, this feature is fundamental to counterexample-guided re-
finement: in CEGAR-based model checkers, the counterexample is typically an
example word from the automaton that models the program.

3.2 Client information

OpenNWA provides a facility that we call client information. This feature allows
the user of the library to attach arbitrary information to each state in the NWA.
For instance, as discussed in §4, McVeto uses NWAs internally, and uses client
information to attach a formula to each state in the NWA.

The library tracks this information as best as it can through each of the
operations discussed in the previous section, and supports callback functions to
compute new client information when it does not have the information it needs.

3.3 Inter-operability with WPDSs

Weighted pushdown systems (WPDSs) can be used to perform interprocedural
static analysis of programs [10]. The PDS proper provides a model of the pro-
gram’s control flow, while the weights on PDS rules express the dataflow trans-
formers. Algorithms exist to query the configuration space of WPDSs, which
corresponds to asking a question about the data values that can arise at a set of
configurations in the program’s state space. A configuration consists of a control
location and a list of items on the stack.

OpenNWA supports converting an NWA into a WALi WPDS. This feature
allows an OpenNWA client to issue queries about the configuration space of
an NWA. The WPDS’s stack corresponds to the states that label the as-yet-
unmatched nesting edges in a prefix of an input nested word. When viewed in
program-analysis terms, the WPDS that results from this conversion reflects
the same control structure as the original NWA. Answers to WPDS queries
tend to have a natural interpretation in the NWA world, as well. For NWA
operations that can be expressed naturally in this way (e.g., emptiness checking
and post∗), OpenNWA employs this conversion. Other NWA operations, such
as determinization, do not have an equivalent WPDS operation.

NWAs themselves are not weighted, but OpenNWA provides a facility for
determining the weights of the WPDS rules during conversion. The user provides

4



an instance of class WeightGen, which acts as a factory function. The function is
called with the states in question and returns the weight of the resulting WPDS
rule. (The weight can depend on the client information of the states.)

4 Uses of OpenNWA

I/O compatibility checking. We used OpenNWA as the primary component
of a tool called the Producer-Consumer Conformance Analyzer (PCCA) [4].
Given two programs that operate in a producer/consumer relationship over a
stream, PCCA’s goal is to determine whether the consumer is prepared to accept
all messages that the producer can emit, and find a counterexample if not. PCCA
infers a model of the output language of the producer, infers a model of the input
language of the consumer, and determines whether the models are compatible.

PCCA uses NWAs for its models, building them from the ICFG, as discussed
in Ex. 1. Edges corresponding to statements that perform I/O are labeled with
the type of the I/O, and all other internal transitions are labeled with ε. Con-
ceptually what we want to check is whether the producer’s output language is a
subset of the consumer’s input language, which is an operation NWAs and our
library support. In practice, this check is likely to be too strict, and we need an
additional step, detailed in [4, §2.3 and §3.2].

Machine-code model checking. McVeto is a machine-code verification en-
gine [11] that, given a binary and description of a bad target state, tries to find
either (i) an input that forces the bad state to be reached, or (ii) a proof that
the bad state is impossible to reach.

McVeto uses a model of the program called a proof graph, which is an NWA
that overapproximates the program’s behavior. States in a proof graph are la-
beled with formulas; edges are labeled with program statements. McVeto starts
with a very coarse overapproximation, which it then refines. One refinement
technique uses symbolic execution to produce a concrete trace of the program’s
behavior, performs trace generalization [11, §3.1] to convert the trace into an
overapproximating NWA (the “folded trace”), and intersects the current proof
graph with the folded trace to obtain the new proof graph. The formula on a
state in the new proof graph is the conjunction of the formulas on the states
that are being paired from the current proof graph and the folded trace.

McVeto’s implementation uses OpenNWA’s client-information feature to
store the formula for each state. During intersection, the callback functions men-
tioned in §3.2 compute the conjunction of the input formulas, which are then
used in the new proof graph.

To determine whether the target state is not reachable in the proof graph (and
thus is definitely not reachable in the actual program), McVeto calls prestar()
(see §3.3). The result of this call is also used to determine which “frontier” to
extend next during directed test generation [11, §3.3].

JavaScript security-policy checking and weaving. The JAM tool [6]
checks a JavaScript program against a security policy, either verifying that the
program is already correct with respect to that policy or inserting dynamic
checks into the program to ensure that it will behave correctly. JAM builds two

5



models of the input program, one that overapproximates the control flow of the
program and one that overapproximates the data flow. The policy is also ex-
pressed as an NWA of forbidden traces. By intersecting the policy automaton
with both program models, JAM obtains an NWA that expresses traces that
possibly violate the policy.

Once JAM has the combined NWA, it asks OpenNWA for a shortest word
in the language. If the language is empty (i.e., there is no shortest word), the
program always respects the policy. If OpenNWA returns an example word w,
JAM checks whether w corresponds to a valid trace through the program. If w is
valid, then JAM inserts a dynamic check to halt concrete executions correspond-
ing to w that would violate the policy. If w is not valid, than JAM can either
refine the abstraction and repeat, or insert a dynamic check to detect and halt
concrete executions corresponding to w for which the policy would be violated.

5 Related work

Alur and Madhusudan each maintain a page giving a significant bibliography of
papers that present theoretical results, practical applications, and tools related to
NWAs and visibly pushdown automata (VPAs) [1, 8]. VPAs and their languages
are another formalism which can be seen as an alternative encoding of NWAs
and nested-word languages [3].

VPAlib [9] is a general-purpose library implementing VPAs. However, Open-
NWA’s implementation is far more complete. For instance, VPAlib does not
support concatenation, complementation (although it does support determiniza-
tion), checking emptiness, or obtaining an example word.

References

1. R. Alur. Nested words, 2011. http://www.cis.upenn.edu/~alur/nw.html.
2. R. Alur and P. Madhusudan. Adding nesting structure to words. In DLT, 2006.
3. R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3),

May 2009.
4. E. Driscoll, A. Burton, and T. Reps. Checking conformance of a producer and a

consumer. In FSE, 2011.
5. E. Driscoll, A. Thakur, A. Burton, , and T. Reps. WALi: Nested-word automata.

TR-1675R, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, Sept. 2011.
6. M. Fredrikson, R. Joiner, S. Jha, T. Reps, P. Porras, H. Säıdi, and V. Yegneswaran.

Efficient runtime policy enforcement using counterexample-guided abstraction re-
finement. In CAV, 2012.

7. N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

8. P. Madhusudan. Visibly pushdown automata – automata on nested words, 2009.
http://www.cs.uiuc.edu/~madhu/vpa/.

9. H. Nguyen. Visibly pushdown automata library, 2006. http://www.emn.fr/

z-info/hnguyen/vpa/.
10. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and

their application to interprocedural dataflow analysis. SCP, 58(1–2), Oct. 2005.
11. A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and

T. Reps. Directed proof generation for machine code. TR 1669, UW-Madison,
Apr. 2010. Abridged version published in CAV 2010.

6


