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Abstract
Fixing concurrency bugs (or crugs) is critical in modern
software systems. Static analyses to find crugs such as data
races and atomicity violations scale poorly, while dynamic
approaches incur high run-time overheads. Crugs manifest
only under specific execution interleavings that may not arise
during in-house testing, thereby demanding a lightweight pro-
gram monitoring technique that can be used post-deployment.

We present Cooperative Crug Isolation (CCI), a low-
overhead instrumentation framework to diagnose production-
run failures caused by crugs. CCI tracks specific thread inter-
leavings at run-time, and uses statistical models to identify
strong failure predictors among these. We offer a varied suite
of predicates that represent different trade-offs between com-
plexity and fault isolation capability. We also develop variant
random sampling strategies that suit different types of predi-
cates and help keep the run-time overhead low. Experiments
with 9 real-world bugs in 6 non-trivial C applications show
that these schemes span a wide spectrum of performance
and diagnosis capabilities, each suitable for different usage
scenarios.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—parallel program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification—statistical methods; D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids
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1. Introduction
1.1 Motivation
Concurrency bugs (or crugs), such as data races [9, 12,
36] and atomicity violations [13, 26], are among the most
troublesome software bugs. The unique non-determinism
of crugs makes them difficult to expose during in-house
testing. As a result, many crugs slip into production runs and
manifest at user sites. Even worse, many crugs can cause
severe software failures, varying from data corruption to
program crashes [16]. Crugs have caused real-world disasters
in the past, such as the Northeastern Blackout of 2003 [37].
Growing use of concurrent programs on multi-core hardware
means that software reliability is increasingly threatened
by crugs. Tools for diagnosing production-run failures in
concurrent software are sorely needed.

To date, it has been extremely difficult to diagnose
production-run software failures caused by crugs. Perfor-
mance is the biggest challenge. Most prior crug detection
tools either have huge overhead (10×–100× slowdown [36])
or require specialized hardware that does not yet exist [26].
Accuracy is another challenge, as many previous detec-
tors [13, 36] have high false positive rates. For example,
Narayanasamy et al. [31] show that only about 10% of real
data races are harmful and could cause software failures.
Recently Marino et al. [29] and Bond et al. [5] smartly use
sampling to improve the performance of race detection. Al-
though inspiring as a race detector, it unavoidably suffers
accuracy and coverage problems in failure diagnosis; we
discuss this further in Section 5.4 and Section 6. Furthermore,
it can be very hard for developers to reproduce field-detected
concurrent software failures which manifest only under spe-
cial interleavings. Even if the bug-triggering input is known,
it may still take developers several days to reproduce a crug
[32]. As a result, failure diagnosis is a nightmare for the
developers of concurrent programs.
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Thread 1 Thread 2
len = strlen ( str );

memcpy(&buf[cnt], str, len );

len = strlen ( str );

memcpy(&buf[cnt], str, len );

cnt += len;

cnt += len;

Figure 1: Atomicity violation bug from the Apache HTTP
Server. The variables buf and cnt are both shared. Both
threads are inside function ap buffered log writer .

The Cooperative Bug Isolation project (CBI) aims to au-
tomatically diagnose production-run software failures with
small run-time overhead [8, 23, 25]. It achieves this goal
through three steps. First, it statically instruments a program
at particular program points so as to monitor various predi-
cates on program state and behavior, such as variable value
predicates (e.g., x > y) or the paths followed at conditional
branches. Next, at run-time, it gathers feedback about pro-
gram execution by collecting these predicate samples, as well
as corresponding labels of execution results (success or fail-
ure). Lastly, CBI performs statistical debugging: statistical
analysis of aggregated feedback data to identify program
(mis)behaviors that are highly correlated with failure. The
CBI framework achieves low monitoring overhead through
sparse random sampling of the instrumentation and by col-
lecting information from many user sites.

Unfortunately, prior CBI work is poorly suited to diag-
nosing software failures caused by crugs. The root causes of
concurrency bugs fundamentally involve sequences of actions
from multiple threads. They cannot be captured by predicates
used in prior CBI work, which focus on one thread at a time.

Figure 1 shows an example simplified from a real-world
crug in the Apache HTTP Server [1]. Shared variable cnt is
the tail index of shared buffer buf. Every thread appends log
messages to this buffer based on the index. Unfortunately,
without proper synchronization, buffer updates and index
accesses from different threads can race with each other and
lead to garbage data in the log, as shown in Figure 1.

Previous CBI tools fail to diagnose this problem. In
our experiment, none of the standard predicates behaves
differently in failing versus successful runs with at least
95% confidence (CBI’s standard acceptance threshold to
counteract the effects of sampling noise). This is because
the software’s misbehavior (garbage log data) can happen
with normal variable values (e.g., cnt remains in bound) and
normal execution paths, if considered only within individual
threads. Thus we require new instrumentation schemes in
order to diagnose software failures due to crugs.

1.2 Contributions
This paper presents Cooperative Crug Isolation (CCI), a low-
overhead dynamic strategy for diagnosing production-run
failures in concurrent programs. Following the Cooperative
Bug Isolation philosophy, CCI monitors interleaving-related
predicates at run time; leverages sampling to keep the run-
time overhead low; and uses statistical models to process run-
time information aggregated through many runs and many
users and identify the root causes of production-run failures.

Applying the Cooperative Bug Isolation idea to crugs
raises two major questions:

What types of predicates are suitable for crug diagno-
sis? Instrumentation must balance failure-predictive power
and computational simplicity. Poorly-designed predicates
may be unable to explain any crug failures. Yet costly predi-
cates must use low sampling rates in order to provide perfor-
mance guarantees, thereby delaying diagnosis. If the evalua-
tion of a predicate relies on long and continuous monitoring,
it may be unsuitable for sampling.

How can we sample predicates that are related to
concurrency bugs? Previous CBI work made predicate
sampling decisions independently in each thread at each
execution point. CCI sampling is much more complex. It
may require cross-thread coordination, because crugs involve
multiple threads. It must also keep each sampling period
active for some time, because crugs always involve multiple
memory accesses. Proper sampling design affects both the
number of predicates that can be collected as well as the
correctness of the collected data.

There may be no single solution to all of the above
challenges. We consider three different types of predicates
together with new sampling strategies that support each:

1. CCI-Havoc tracks whether the value of a memory loca-
tion is changed between two consecutive accesses from
one thread. This captures the change of program states in
the view of one thread at two nearby points. CCI-Havoc
monitoring is supported by thread-independent and bursty-
style sampling in CCI.

2. CCI-FunRe tracks function re-entrance: simultaneous
execution by multiple threads. This captures the interac-
tion among multiple threads at a coarse granularity. It is
supported by thread-coordinated and unconditional sam-
pling.

3. CCI-Prev tracks whether two consecutive accesses to one
memory location come from the same thread or distinct
threads. This captures interactions among multiple threads
at a fine granularity. It is supported by thread-coordinated
and bursty sampling.

These three schemes offer different types of information
that may help diagnose crug failures. They provide differ-
ent trade-offs between performance and failure-predicting



capability, and demonstrate different ways of sampling in
concurrent programs.

Specifically, this paper makes the following contributions:

• A new suite of predicates that effectively diagnose
production-run failures in concurrent programs. Each
reflects a common type of root cause for synchronization
failure. Together, they span a wide spectrum of trade-offs
between diagnostic capability and complexity.
• A new suite of sampling schemes that support differ-

ent types of crug instrumentation. Interleaving-related
predicates are more complex than those used in previ-
ous CBI work. CCI offers suitable sampling strategies
to support proposed and future interleaving-related pred-
icates: thread-independent and thread-coordinated sam-
pling; bursty and non-bursty sampling; and conditional
and un-conditional sampling.
• A tool, CCI, that diagnoses production-run failures in

concurrent programs. CCI provides:

Low run-time overhead benefiting from the sampling
techniques developed herein.

Low false positive rate benefiting from statistical de-
bugging. Many previous detection tools [12, 13, 36]
have high false positive rates, because races and atom-
icity violations can be benign. As a failure diagnosis
tool, CCI is immune to these false positives, because
its statistical analysis leverages information about
whether a particular run succeeded or failed and identi-
fies those predicates whose values are truly correlated
with observed failure.

Good diagnosis coverage benefiting from the crug-
related predicates used in CCI. CCI-Prev predicates
capture data races and atomicity violations; CCI-
FunRe predicates capture misuse of thread-unsafe
functions; and CCI-Havoc predicates capture atom-
icity violations. These are among the most common
causes of crugs [27].

We validate CCI by using it to identify root causes of
real-world failures in several concurrent C applications, in-
cluding Apache [1], Cherokee, Mozilla, PBZIP2 [15], and
the SPLASH-2 [44] benchmarks.

Experimental results show that CCI is very effective,
dramatically outstripping CBI, for crug diagnosis. Traditional
CBI tools fail completely, providing no predictors for any of
our buggy concurrent test subjects. The predictors reported
by CCI, however, accurately point to the root causes of a wide
variety of failures. Furthermore, CCI achieves this excellent
failure diagnosis with small run-time overhead (mostly within
10%), thanks to its sampling mechanisms.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the CBI framework. Sections 3
and 4 respectively describe our instrumentation predicates
and sampling strategies in detail. We present experimental

results in Section 5 and discuss related work in Section 6.
Section 7 concludes and suggests directions for future work.

2. Background
CCI builds upon Cooperative Bug Isolation (CBI), a frame-
work for lightweight instrumentation and statistically-guided
debugging [23, 25]. CBI collects information about program
execution from both successful and failing runs and applies
statistical techniques to identify the likely causes of software
failures.

2.1 Data Collection Using Sampled Instrumentation
CBI’s instrumenting compiler uses source-to-source transfor-
mation to add instrumentation code that monitors the values
of predicates at particular program points, called instrumen-
tation sites. In this paper, we denote recording the value of
predicate p at instrumentation site s as record(s, p). The tra-
ditional CBI framework tracks following types of predicates:

Branches: Each branch is an instrumentation site. Two pred-
icates are associated with each site: one is true when the
true branch is taken, and the other is true when the false
branch is taken.

Returns: Each function return point is an instrumentation
site. A set of three predicates at each site track whether
the returned value is negative, zero, or positive.

Scalar-pairs: At each assignment to a scalar variable x, one
instrumentation site is created for each other same-type
in-scope variable y. Each such site has three predicates,
recording whether x is smaller than, larger than, or equal
to y. Value comparisons between x and program constants
are also added, one instrumentation site per constant.

During execution, the instrumentation code collects pred-
icate profiles recording whether each monitored predicate
was ever observed, and if observed, whether it was ever true.
The feedback report from each run is a bit vector with two
bits for each predicate (observed and true), plus one final bit
indicating overall execution success or failure.

2.2 Data Analysis Using Statistical Debugging
CBI’s statistical debugging models operate on large collec-
tions of feedback reports. The models assign a score to every
available predicate and identify the best failure predictor
among them. Intuitively, a good predictor should be both sen-
sitive (accounts for many failed runs) and specific (does not
mis-predict failure in successful runs). Thus, a good predictor
is an instrumented predicate that is true in many failed runs
but very few successful runs. CBI’s scoring model considers
both sensitivity and specificity to select top predictors.

Prior work shows that the best predictor often points to
a bug that is responsible for many observed failures. An
iterative ranking and elimination process continues to pick up
the best remaining predicate to explain the remaining failures
until all failures are explained or all available predicates are



discarded. We omit a detailed discussion of these statistical
models here, as they are identical to those used in prior CBI
work. The main focus of the present research is how to collect
informative raw data efficiently in the first place.

Monitoring overheads must be very low for this approach
to be feasible in post-deployment environments. The CBI
framework achieves this goal through sparse random sam-
pling. At run time, each time an instrumentation site is
reached, a Poisson (memory-less) random choice decides
whether or not the predicate information associated with
that site will be collected. In this paper, “ [[ instr ; ]]?” rep-
resents the random sampling of the instrumentation instr .
Sparse sampling means that most instrumentation code is
not run, and therefore most run-time events are not actually
observed. However, sampling is statistically fair, so the small
amount of data that is collected is an unbiased representation
of the complete-but-unseen data. Therefore, given a large
number of user runs and appropriate statistical models, the
root causes of failure emerge as consistent signals through
the sparsely-sampled noise.

2.3 Practical Suitability for Concurrency Bugs
Prior CBI work has not focused directly on concurrency-
related issues. There are good reasons to believe, however,
that the two can be a sensible, natural fit in practice.

Analysis of feedback reports does not depend on the exact
failure location (e.g., stack trace). The statistical models can
diagnose both fail-stop errors as well as nonfatal bugs which
allow execution to continue. They only require outcome
labels marking each run as successful or failed. If one can
only recognize crashes as failures, then we can diagnose
crugs that lead to crashes. If one can automatically recognize
corrupted output, then we can diagnose crugs that corrupt
output. If users must manually flag runs as failed, then only
crugs that sufficiently disturb users will be diagnosed.

Thus, statistical debugging is “pay as you go”: developers
receive diagnoses of whatever bugs they can recognize when
they arise. This was true in prior CBI work and it remains
true in CCI. Conversely, the statistical models automatically
ignore benign race conditions that never cause noticeable
failures. This is a key benefit of our approach.

The sampled nature of CBI and CCI instrumentation might
be seen as a limitation: if crugs are rare, then sampling could
miss key clues. However, we see this as a strength. Even
if crugs manifest less frequently than sequential bugs, CCI
can help diagnose them in the field as long as the bugs
have caused a sufficient number of failures just like CBI
diagnoses sequential bug failures. For deployed software,
diagnosis preference is usually given to those bugs (whether
sequential or concurrent) that have manifested and bothered
a sufficient number of users. Statistical debugging excels in
exactly this scenario. Indeed, it would be quite reasonable to
deploy a program with both CBI and CCI instrumentation,
then let bugs “compete” for developer attention via the single
statistical model that CBI and CCI both share.

Thread 1 Thread 2
mut = NULL;

S: unlock(mut);

(a) Failing run: localS = false, remoteS = true

lock(mut);
S: unlock(mut);

mut = NULL;

(b) Correct run: localS = true, remoteS = false

Figure 2: State of CCI predicates in two different thread
interleavings. Above code is simplified from a data race bug
from PBZIP2 in which thread 1 nullifies the shared mutex
variable, mut, when thread 2 is still using mut.

3. CCI Instrumentation Schemes
CCI does not gather anything approaching a complete trace at
run time. Rather, it collects just a small amount of potentially-
informative data that is readily available with minimal over-
head. The format of such information (i.e., predicates) must
be designed carefully, taking the following factors into ac-
count:

Simplicity. Simpler predicates allow more intensive sam-
pling without causing excessive slowdown during produc-
tion runs.

Failure-predictive capability. Predicates must reflect com-
mon root causes of crugs in order to explain crug failures
during production runs.

Suitability for sampling. Sampled feedback data is incom-
plete. This limitation can make some types of predicates
hard to evaluate. We discuss this further in Section 4.3.

It is unlikely that a single instrumentation strategy can
satisfy all of these requirements. Therefore, in CCI, we design
and explore three types of predicates that represent different
design trade-offs: CCI-Prev, CCI-FunRe, and CCI-Havoc.
The remainder of this section discusses the design of these
three instrumentation schemes and how to monitor these
predicates at run time without concern for sampling. The next
section develops sampling strategies suitable for use with
these three instrumentation schemes.

3.1 CCI-Prev Scheme
CCI-Prev tracks whether two successive accesses to a given
location were by two distinct threads or were by the same
thread both times.

3.1.1 CCI-Prev Instrumentation Sites
CCI-Prev monitors each instruction I that might access a
shared location g. Each such instruction can exhibit two pos-
sible behaviors at run time: either the thread now accessing
g at I was the same thread that accessed g previously, or



1 lock(glock);
2 changed = test and insert(&g, curTid);
3 record(s, changed);
4 access(g);
5 unlock(glock);

Figure 3: CCI-Prev instrumentation. The original program
code, represented here as access(g) on line 4, was either a
read or a write of possibly-shared memory location g.

the previous access was by a different thread. In CBI terms,
we say that I constitutes a single instrumentation site with
two predicates: localI is true if the previous access was from
the same thread, while remoteI is true if the previous access
was from a different thread. Each time instruction I is exe-
cuted, exactly one of these two predicates must be true, and
the other false. For example, when execution follows Fig-
ure 2a, CCI records that remoteS is true. Conversely, when
the interleaving follows Figure 2b, localS is true.

3.1.2 Diagnostic Potential of CCI-Prev
CCI-Prev predicates are closely tied to the root causes of
crugs, such as atomicity violations and data races. Most atom-
icity violation bugs happen when one thread’s consecutive
accesses to a shared variable are non-serializably interleaved
with accesses from a different thread [26, 42]. The Apache
bug shown in Figure 1 is one such example: two consecutive
read accesses to cnt in thread 2 are interleaved. Our remoteI
predicates capture these bad interleavings. Data races occur
when conflicting accesses from different threads touch the
same shared variable without proper synchronization. The
PBZIP2 bug shown in Figure 2 is a typical example of a data
race bug, and likewise can be recognized using CCI-Prev
predicates.

CCI-Prev predicates are definitely not true atomicity-
violation or race detectors. Extra information, including
memory access type (i.e., read vs. write) and synchronization
(i.e., when and which locks are acquired and released),
would be needed to precisely record atomicity violations and
data races. We intentionally ignore this information to keep
instrumentation simple, following the CCI design principles
mentioned above.

3.1.3 CCI-Prev Instrumentation Strategy
CCI-Prev instrumentation requires recording which thread
issued the latest access to each shared memory location at
run-time.

Figure 3 illustrates the instrumentation inserted by CCI
at compile time. This instrumentation interacts with a global
last-access hash table that stores mappings from memory ad-
dresses to the ID of the thread that last accessed each memory
location. This hash table is checked and updated at every in-
strumentation point by function test and insert on line 2. As
a result of test and insert , the local variable changed is set
to true if the entry in the hash table corresponding to &g does

not equal curTid (i.e., the ID of the current thread), and to
false otherwise. In addition, test and insert inserts the entry
&g 7→ curTid into the last-access hash table. Subsequently,
the value of changed is used to record CCI-Prev predicates
as shown on line 3. Also note that in this scheme the variable
glock is a global lock that is used to synchronize accesses to
the entire hash table and ensure that the instrumented code
appears to execute atomically. Notice that this global lock
will never cause previously impossible program interleavings
or deadlocks. Future work can further optimize CCI-Prev
using lock-free hash tables [18] or fine-grained locks.

One practical challenge in our static instrumentation is that
a single code statement might access multiple possibly-shared
locations, and thereby require multiple hash table inserts and
look-ups. We solve this by automatically rewriting complex
source statements as multiple, equivalent, simpler statements
which each accesses at most one possibly-shared location.

Our current implementation uses an extremely lightweight
analysis to decide which accesses touch possibly-shared
memory locations. We do not instrument accesses to const-
qualified data. We instrument every direct access to a named
global variable that is not declared as thread-local or a
named local variable whose address is taken anywhere in
the containing function. Finally, we instrument every indirect
access through a pointer. Future work can use escape analysis
to prune out unnecessary instrumentation sites and further
improve CCI’s performance.

3.2 CCI-FunRe Scheme
CCI-FunRe tracks whether the execution of a function F
overlaps with the execution of F from a different thread.

3.2.1 CCI-FunRe Instrumentation Sites
CCI-FunRe monitors each function F . Each execution of F
can exhibit two possible behaviors at run time: either no other
thread executes F during the current thread’s execution of F ,
or there exists another thread that executes F simultaneously.
We say that F yields a single instrumentation site with two
predicates: ReentF is true if the execution of F overlaps with
the execution of F from another thread, while NonReentF
is true if there is no such overlap. Each time function F is
executed, exactly one of these two predicates must be true,
and the other false. For example, Reentap buffered log writer is
true for the interleaving shown in Figure 1.

3.2.2 Diagnostic Potential of CCI-FunRe
CCI-FunRe captures thread-interaction at function-level gran-
ularity. Since this granularity is much coarser than the access-
level granularity adopted by CCI-Prev, CCI-FunRe has lower
overhead than CCI-Prev under the same sampling rate.

CCI-FunRe covers a common pattern of crugs: a function
is not thread-safe but is invoked by multiple threads concur-
rently. The Apache bug shown in Figure 1 is one such ex-
ample. Function ap buffered log writer updates the global
log of Apache server. It should never be executed by mul-



1 F (...) {
2 if (( local FCount++)==0)
3 oldFCount = atomic inc(FCount);
4 record(s, oldFCount);
5 ...
6 if ((−−local FCount)==0)
7 atomic dec(FCount);
8 }

Figure 4: CCI-FunRe instrumentation. Line 5 represents the
original function body, transformed so that all exits from the
function pass through line 7.

tiple threads at the same time. The buggy implementation
leads to logging failure when this function is re-entered. The
Reentap buffered log writer predicate captures this mistake.

Of course, CCI-FunRe’s course granularity may limit
accuracy. If function F performs multiple tasks, some parts
of F may be safely reentrant while others are not. In this case,
CCI will observe that ReentF is true whenever the program
fails, but ReentF being true does not ensure failure. CCI
can leverage such information to zoom into function F and
get more accurate failure predictors. Section 5.2.2 discusses
an example of this sort of diagnosis, currently performed
manually, but potentially amenable to automation.

3.2.3 CCI-FunRe Instrumentation Strategy
In order to track re-entrance predicates, CCI maintains a
global counter for each function F to indicate how many
threads are executing F right now. This counter is updated
at the entrance and the exit of F , as shown on lines 3
and 7 of Figure 4. A per-thread counter local FCount is
also maintained to prevent a thread from updating the global
counter multiple times during recursive calls. Based on the
global counter’s old value (oldFCount) at function entry, CCI
records a single observation of the ReentF and NonReentF
predicates on line 4. The counter update is implemented using
atomic instructions.

3.3 CCI-Havoc Scheme
CCI-Havoc tracks whether the value of a given shared loca-
tion changes between two consecutive accesses by one thread.
Its name refers to the value-scrambling havoc x statement of
Elmas et al. [11].

3.3.1 CCI-Havoc Instrumentation Sites
CCI-Havoc monitors each instruction I that might access
a shared location g. Each such instruction can exhibit two
possible behaviors at run time: either the value in g has not
changed since this thread’s last access to g, or the value has
changed. We say that I constitutes a single instrumentation
site with two predicates: ChangedI is true if the current value
of g is different from its old value right after this thread’s last
access to g, while UnchangedI is true if the prior and current
values are the same. Each time I is executed, CCI records a

single true observation of either ChangedI or UnchangedI . In
the example from Figure 1, if len is nonzero in thread 1, then
Changedcnt += len is true in thread 2 because cnt has changed
its value since the previous access by thread 2. In the example
from Figure 2b, UnchangedS is true, since mut has the same
value seen in the previous access by thread 2.

3.3.2 Diagnostic Potential of CCI-Havoc
Each CCI-Havoc predicate is only concerned with the state of
the program as observed by a single thread. No cross-thread
coordination is required. This makes CCI-Havoc instrumen-
tation much simpler than that required for CCI-FunRe and
CCI-Prev, and is similar to traditional CBI instrumentation.

Unlike traditional CBI predicates, CCI-Havoc predicates
are closely related to atomicity violations, the most common
root causes of crugs [27]. Previous studies [26, 32, 42] have
shown that all atomicity violations that involve single variable
can be categorized into four cases, shown in Figure 5. Three
of these four cases are accurately captured by some CCI-
Havoc predicate.

3.3.3 CCI-Havoc Instrumentation Strategy
CCI-Havoc instrumentation requires tracking the value held
in each memory location right after each thread’s last access
of that location. Given this information, CCI can evaluate
CCI-Havoc predicates when needed as the instrumented
program runs.

Figure 6 illustrates the instrumentation inserted by CCI at
compile time. The instrumentation performs two tasks: (1)
evaluating predicates on the present state, and (2) updating the
history information for future use. Lines 1 and 2 of Figure 6
perform the first task. Function test uses a per-thread hash
table to find the old value stored at g right after the last
access to g from the current thread. The comparison between
the old and the current values stored at g sets the local
variable changed to true if and only if g has been changed.
Subsequently, the value of changed is used to record CCI-
Havoc predicates as shown on line 2. The insert call on line 4
updates the same per-thread hash table to map &g 7→ g, i.e.,
to record the current value of g as the last value seen by this
thread at address &g.

Note that, unlike CCI-Prev and CCI-FunRe, all informa-
tion used by CCI-Havoc is thread-local. Therefore, evaluating
CCI-Havoc predicates requires no locking or synchronization
of any kind, which helps the performance and scalability of
CCI-Havoc as shown in Section 5. Actually, there is a (be-
nign) race in our instrumented code: theoretically, the value
of g could be changed by other threads between lines 1 and 3.
Fortunately, this type of low-probability noise is easily han-
dled by CCI’s supporting statistical models [25] and therefore
does not perceptibly affect CCI’s failure diagnosis.

The current implementation of CCI-Havoc uses the similar
lightweight analysis as that in CCI-Prev to decide which are
possibly-shared memory locations. This can be enhanced by
escape analysis in the future.



Thread 1 Thread 2
A: read g

C: write g
B: read g

Case 1: read followed by read, in-
terleaved by a write

Thread 1 Thread 2
A: read g

C: write g
B: write g

Case 2: read followed by write, in-
terleaved by a write

Thread 1 Thread 2
A: write g

C: write g
B: read g

Case 3: write followed by read, in-
terleaved by a write

Thread 1 Thread 2
A: write g

C: read g
B: write g

Case 4: write followed by write,
interleaved by a read

Figure 5: Possible cases of single-variable atomicity violation. Cases (1)–(3) are captured by ChangedB predicates.

1 changed = test(&g, g);
2 record(s, changed);
3 access(g);
4 insert (&g, g);

Figure 6: CCI-Havoc instrumentation. The original program
code, represented here as access(g) on line 3, was either a
read or a write of possibly-shared memory location g.

4. CCI Sampling
Sampling can be highly effective in achieving the low over-
heads that production usage demands. The challenge is to find
suitable sampling strategies for each type of predicate. A care-
less or inappropriate approach to sampling cannot guarantee
the correctness of predicate evaluation and may sample 90%
of the execution with only 10% of the predicates collected.

Like CBI, CCI randomly decides which code regions to
sample at run time. The sampling rate can be adjusted to
control the imposed overhead. Unlike CBI, CCI sampling
must make several extra decisions to maintain correctness
and good coverage:

Thread-coordinated versus independent sampling. When
using predicates (e.g., CBI, CCI-Havoc) that concern them-
selves with data and control activity within single threads,
each thread can make local, independent decisions about
when to start/stop the sampling. However, CCI predicates
that monitor interactions among multiple threads require inter-
thread coordination.

Length of each sampling period. In CBI, each sampling
“period” only lasts for one statement. This works well for CBI
predicates, as each observes the program state at one execu-
tion point. However, this is not suitable for CCI predicates
that require considering multiple execution points together.

Correctness of predicate evaluation. Monitoring interleav-
ing patterns may require history information (e.g., regarding
the previous access to this variable). Unfortunately, sampling
never presents a complete history of program execution. Cor-
rect evaluation of certain predicates demands a hybrid ap-
proach with both unconditional and sampled instrumentation.

The remainder of this section discusses the design and
implementation of appropriate sampling strategies for the
three types of CCI predicates presented earlier.

1 if (gsample) {
2 lock(glock);
3 changed = test and insert(&g, curTid, &stale);
4 record(stale ? s1 : s2, changed);
5 access(g);
6 gLength++;
7 unlock(glock);
8 lLength++;
9 if (( iset == curTid && lLength > lMAX)

10 || gLength > gMAX) {
11 clear ();
12 iset = unusedTid;
13 gsample = false;
14 }
15 } else {
16 access(g);
17 [[ gsample = true; iset = curTid; lLength=gLength=0;]]?
18 }
Figure 7: Sampled CCI-Prev instrumentation. “[[. . . ]]?”
marks a block of code that is randomly sampled using tradi-
tional CBI sampling methods.

4.1 CCI-Prev Sampling
CCI-Prev requires thread-coordinated, bursty sampling.

Recall that CCI-Prev detects intervening accesses by any
other active thread. Thus, we must activate sampling at
roughly the same time in all threads in order to collect
accurate CCI-Prev predicates. If sampling were not thread-
coordinated, then any non-sampling thread could “sneak in”
and access shared data without notifying other sampling
threads that it had done so.

To implement thread-coordinated sampling, CCI uses one
shared global variable gsample to control whether to run
instrumentation in all threads. Once gsample is set/unset in
one thread, all threads begin/end their sampling. Figure 7
shows how the basic instrumentation from Figure 3 is aug-
mented with sampling. CCI uses the basic random sampling
framework of CBI to set gsample at line 17 to turn on sam-
pling. Once sampling is turned on the instrumentation code at
lines 2–14 is enabled in all threads. When sampling is turned
off, lines 16–17 are executed.

The length of each sampling period is critical for CCI-Prev
sampling. A sampling period must last long enough time to
cover at least one pair of consecutive accesses to a shared



memory location in order to accurately record one CCI-Prev
predicate. However, the sampling period cannot be too long,
or else performance will suffer. Park et al. [32] have shown
that temporal locality exists in crugs, especially atomicity
violation bugs. One previous study has observed that the
atomic regions involved in typical atomicity violation bugs
range from 500 to 750 instructions [28]. Based on this, our
current CCI prototype uses fixed thresholds to end sampling
periods: 100 global accesses executed by the thread that
starts the sampling or 10,000 global accesses executed by
all threads, whichever occurs first. Of course, there could be
other schemes to decide when to stop a sample period, such
as variants of Hirzel and Chilimbi’s bursty tracing [19]. We
plan to explore these alternatives in the future.

Lines 9–14 of Figure 7 demonstrate how to end a sampling
period. Our implementation keeps the identity of the thread
that turns on sampling by a global variable iset , which is
set at line 17 along with gsample. That thread can turn off
the sampling by clearing the gsample flag when the per-
thread sampling length threshold is reached, as shown on
line 9. Other threads can also turn off the sampling if the
global sampling length threshold is reached first, as shown
on line 10.

Finally, we need to revise predicate evaluation to maintain
correctness in the presence of sampling. Specifically, we
need to differentiate information collected during earlier
sampling periods (referred to as stale information) and that
during the current period (referred to as fresh information).
When an instruction I conducts the first access to a memory
location g during a sampling period, CCI does not have
fresh information about preceding accesses to g and cannot
guarantee the correctness of remoteI and localI .

Our implementation uses a generation counter to differen-
tiate fresh from stale entries in CCI-Prev’s hash table. The
generation count of each new entry is set to be the current
generation counter at the time of insertion. At the end of
every sampling period, function clear is called (line 11 in
Figure 7) to increment the generation counter. Thus, a hash
table entry is stale if its generation count is smaller than the
current generation counter.

Only fresh entries are used to update remote and local
predicates. To fully leverage the sampled information, each in-
strumented instruction maintains a secondary instrumentation
site which considers stale hash table entries. Our rationale is
that wrong predicates will be pruned out with high probabil-
ity through CBI-style statistical analysis anyway. Therefore,
keeping these secondary predicates can exploit more run-time
information without increasing false positives. This design de-
cision affects lines 3–4 in Figure 7. Function test and insert
sets stale to true if the entry corresponding to &g is stale.
Instrumentation site s1 uses the stale entry and records the
predicate, while site s2 always uses information gathered in
the current sampling period.

1 F (...) {
2 if (( local FCount++)==0)
3 oldFCount = atomic inc(FCount, curTid);
4 [[ record(s, oldFCount); ]]?
5 ...
6 if ((−−local FCount)==0)
7 atomic dec(FCount, curTid);
8 }

Figure 8: Sampled CCI-FunRe instrumentation. “[[. . . ]]?”
marks a block of code that is randomly sampled using
traditional CBI sampling methods.

4.2 CCI-Havoc Sampling
CCI-Havoc sampling requires thread-independent, bursty
sampling.

CCI-Havoc predicates compare the values of one memory
location at two nearby execution points in one thread. Since
each predicate only cares about one thread, the sampling
decision can be made independently by each thread, as in
CBI. Since each predicate involves more than one execution
point, each sampling period needs to reach certain length, as
in CCI-Prev. In our current prototype, guided by previous
study of typical atomic-regions’ length [28], each sampling
period ends when the sampling thread conducts more than
100 accesses to shared memory locations.

The implementation of CCI-Havoc sampling uses tradi-
tional CBI mechanism to randomly turn on a thread-local
variable that indicates sampling is active. Subsequently, a
thread-local counter is incremented whenever this thread ac-
cesses a shared memory location. Sampling is turned off when
the counter exceeds the predefined 100-access threshold. The
thread-local hash table that hold mappings from memory lo-
cations to their old values is periodically flushed in a similar
way to that done for the global hash table in CCI-Prev.

4.3 CCI-FunRe Sampling
CCI-FunRe requires a mixture of unconditional and CBI-style
(thread-independent, non-bursty) sampled instrumentation.

The special challenge of CCI-FunRe is that we must
instrument all invocations of F in order to guarantee the
correctness of ReentF . This challenge is different from CCI-
Prev and CCI-Havoc, where correctness is guaranteed as long
as fresh information is used. For CCI-FunRe, when fresh
information indicates that ReentF is false, this may not reflect
reality, because an non-sampled invocation to F may have
occurred before the current sampling period began.

This problem has two potential solutions. The first is to
statically divide functions to groups and monitor all invoca-
tions of functions from one group at each user’s site. The
disadvantage of this approach is the burden of deploying
differently-instrumented executables for different users. The
second solution is to perform unconditional (always-active)
instrumentation for all function invocations (lines 3 and 7 in



Runs

Program KLOC Symptoms Total Failed

Apache-1 333 corrupted log 3,000 1,372
Apache-2 333 crash 3,000 1,566
Cherokee 83 corrupted log 3,000 1,705
FFT 1.3 wrong output 3,000 1,766
LU 1.2 wrong output 3,000 1,179
Mozilla-JS-1 107 crash 3,000 1,660
Mozilla-JS-2 107 wrong output 3,000 1,493
Mozilla-JS-3 107 crash 3,000 1,507
PBZIP2 2.1 crash 3,000 1,350

Table 1: General characteristics of buggy test subjects.
“KLOC” is total program size in thousands of lines of code.

Figure 8) and only apply sampling to predicate evaluation
and recording (line 4). The advantage is that only one instru-
mented executable is needed and the overhead of production-
run monitoring can be adjusted via the sampling rate as ef-
fectively as before. The disadvantage is that unconditional
overhead due to lines 3 and 7 cannot be controlled through
the sampling rate. We use the second solution in our current
prototype, and leave the first for future work.

5. Experimental Evaluation
5.1 Methodology
We have implemented CCI and evaluated it to answer two key
questions: (1) how accurate is CCI in reporting root causes of
concurrent program failures, and (2) what is the performance
overhead of CCI monitoring? To get a better understanding
of CCI’s failure diagnosis capability, we tried two conven-
tional CBI instrumentation schemes for comparison: one that
records the directions of conditional branches, and one that
monitors the relative values of same-typed pairs of scalar
variables. To assess the effectiveness of CCI sampling, we
compared the performance of CCI with and without sampling.
To demonstrate the difference between race detection and CCI
failure diagnosis, we also did experiments with Helgrind [2],
a state-of-practice race detector.

Our experiments were carried out on quad-core Intel
machines using several widely used C applications with real
crugs. In all experiments, we added randomly-executed thread
yield calls in the source code in order to make the program
fail more frequently. These random yields will not affect
the quality of CCI evaluation; they merely change the ratio
of successful to failing runs. In practice, failures would be
much less common in the field. However, as enough failures
have occurred, one could analyze these failures along with
a randomly-selected subset of successes to achieve a similar
mix.

Table 1 shows some characteristics of the buggy test
subjects and the experimental runs. The “Mozilla-JS” test
subject is a standalone JavaScript engine from the Mozilla
web browser.

Program CBI CCI-Prev CCI-Havoc CCI-FunRe

Apache-1 - X 1 X 1 X 1
Apache-2 - X 1 X 1 -
Cherokee - - X 2 -
FFT - X 1 - -
LU - X 1 - -
Mozilla-JS-1 - - X 2 X 1
Mozilla-JS-2 - X 1 X 1 X 1
Mozilla-JS-3 - X 2 X 1 X 1
PBZIP2 - X 1 X 1 -

Table 2: Overall failure diagnosis results. “X n” indicates that
the nth highest ranked predictor captures the root cause, while
“-” indicates that neither of the top two predictors is useful.

We target an effective sampling rate close to 1/100 as
recommended by Liblit et al. [24]. Specifically, for CCI-
Prev and CCI-Havoc that use 100-access bursty sampling
periods, we use start sampling periods with probability 1/10,000.
For CCI-FunRe, which uses single-sample “bursts”, the
sampling rate is exactly 1/100. We use the iterative ranking and
elimination model of Liblit et al. [25] to mine collected data
for failure predictors. Failure predictors discovered by the
statistical model must be correlated with a positive increase
in failure likelihood with at least 95% confidence.

Tables 3–5 visualize analysis results using bug thermome-
ters, one per predictor selected by the statistical model [25].
The width of a thermometer is logarithmic in the number of
runs in which the predicate was observed. The black band on
the left denotes the context of the predicate: the probability of
failure given that the predicate was observed at all, regardless
of whether it was true or false. The dark gray or red band
denotes the 95%-certain increase in the probability of fail-
ure given that the predicate was true. The light gray or pink
band shows the additional increase that is estimated but not
at least 95% confident. A large dark gray/red area indicates
that the predicate being true is highly predictive of failure,
and a small light gray/pink band indicates that this prediction
carries high confidence. Any white space at the right edge
of the band indicates the number of successful runs in which
the predicate was observed to be true: a measure of the bug
predictor’s non-determinism.

Complete analysis results allow some interactivity, and
include more details such as the precise source file name
and line number on which the predictor was observed. These
features are helpful in a programmer’s hands, but we omit
them here to simplify presentation.

5.2 Failure Diagnosis Results
5.2.1 Overall Results
Table 2 shows the overall failure diagnosis results of three
CCI schemes together with a baseline CBI scheme, all
under the roughly 1/100 effective sampling rate described in
Section 5.1. We consider diagnosis successful if either of the



topmost two predictors clearly describes the conditions for
failure and would lead a developer directly to the bug.

As we can see, CCI-Prev, CCI-Havoc, and CCI-FunRe
can all help diagnose real-world crugs. Their top-ranking
predictors can help explain 7, 7, and 4 out of the tested 9 crug
failures, respectively. By contrast, the baseline CBI cannot
diagnose any crug failures. In some cases (Apache-1, Mozilla-
JS-1, and LU), all conventional CBI predicates are eliminated
due to low (< 95%) confidence that they behave differently
in failing versus successful runs. In other cases, some CBI
predicates have statistical correlation with failure, but none
of them, no matter how high- or low-ranked, are relevant to
the failures. This affirms our earlier claim that conventional
CBI is ill-equipped to diagnose crugs.

Among the three CCI schemes, the failure diagnosis ca-
pabilities of CCI-Prev and CCI-Havoc are especially good.
CCI-Prev can diagnose not only atomicity violation bugs
(Apache-1, Apache-2, Mozilla-JS-2, and Mozilla-JS-3) but
also order violation bugs and races (FFT, LU, and PBZIP2).
CCI-Havoc cannot detect order-violation bugs, but it success-
fully diagnoses all atomicity violation bugs in our experi-
ments with high confidence. CCI-FunRe shows the weakest
diagnosis capability due to its coarse granularity.

In order to understand whether sampling has any impact
on above diagnosis results, we repeat the experiments without
sampling. We find exactly the same results except for two
cases: the Mozilla-JS-1 failure can be successfully diagnosed
by CCI-Prev without sampling; the Mozilla-JS-3 failure
can be successfully diagnosed by CBI without sampling.
For CCI-Prev, the reason is that the Mozilla-JS-1 failure
involves a shared memory access and a remote preceding
access that are so far away from each other that they do
not fit into one bursty sampling period. This shows that the
fixed size bursty windows could lead to false negatives in
some cases. As mentioned in Section 4.1, future work can
randomize the bursty-sampling window size within some
suitable distribution. In all other cases, sampling never hurts
CCI’s diagnoses, thanks to the statistical models previously
developed by Liblit et al. [25]. For the CBI case, the reason
is that some program sites and the corresponding predicates
may not reach statistical significance under sparse sampling.
Thus, all but two ‘-’ marks in Table 2 are caused not by the
information loss due to sampling, but rather by the inherent
limitations of each instrumentation scheme. We explore this
further below.

5.2.2 Case Studies
We now use case studies to explain the differing diagnosis
capabilities of CCI-Prev, CCI-Havoc, and CCI-FunRe. We
examine just a few of the bugs from our experiments in detail
here; Sections 5.2.1 and 5.3 respectively report diagnosis and
performance results across the entire suite of buggy programs.

Apache HTTP Server Case 1 is a case where all three CCI
schemes successfully diagnose the failure.

In this experiment we use CCI to diagnose a non-
deterministic log corruption problem in Apache. This bug
(illustrated in Figure 1) was originally reported by Apache
users Sussman and Trawick [40] on the Apache Bugzilla
bug tracker. Our experiment consists of 3,000 runs based on
this bug report. Each run starts the Apache HTTP Server,
downloads two files in parallel ten times, then stops the
server. Each run is labeled as a failure if the server’s log file
is corrupted and a success otherwise.

Table 3 lists the top-ranked bug predictor from each
CCI scheme. As we can see, all CCI schemes successfully
identify the root cause of this Apache failure. CCI-Prev
points out that the failure is related to an unexpected remote
access to cnt preceding the read of cnt at cnt += len in
function ap buffered log writer . CCI-Havoc points out that
the failure is related to an unexpected change to cnt between
its two uses in this same function; CCI-FunRe identifies
reentrant execution of this same function as the reason for the
failure.

This Apache failure and the three Mozilla failures are
the four failures in our experiments that CCI-FunRe can
successfully diagnose. In all cases, the involved functions
are relatively short. Each performs a simple task (e.g., write
to the global log) that should not be carried out without
synchronization.

Cherokee is a case where only CCI-Havoc successfully
diagnoses the failure. Table 4 shows the top two predictors
of CCI-Havoc. Actually, the first predictor points to a crug
that we were previously unaware of; the second predictor
successfully explains the random log corruption problem that
we tried to diagnose.

Figure 9 illustrates this bug, originally reported by Chero-
kee users. Its symptom is non-deterministic log corruption,
similar to that of the Apache bug discussed above. However,
only CCI-Havoc successfully diagnoses Cherokee’s variant
of this problem. As Figure 9 shows, the Cherokee log (g buf)
is corrupted whenever the buffer index g buf−>len is modi-
fied between S1 and S2. CCI-Havoc correctly identifies the
failure predictor as shown in Table 4.

CCI-Prev was unable to identify remoteS2 as a failure pre-
dictor because S2 could be preceded by a read to g buf−>len
from a different thread, which will not cause the failure. Ignor-
ing the access type of preceding accesses causes this false neg-
ative. Future work can extend CCI-Prev to collect four types
of predicates remote � write, remote � read , local � write,
and local � read , in order to diagnose failures similar to this
Cherokee one.

CCI-FunRe did not identify function update guts as a
failure predictor, simply because update guts is a large, com-
plex function. The majority of its actions do not use g buf and
can be safely executed by multiple threads simultaneously.
CCI-FunRe could diagnose this failure if its monitoring gran-
ularity were smaller than one function. We tried splitting
update guts to several monitoring blocks using preexisting



Scheme Thermometer Predicate Function

CCI-Prev cnt remote � read ap buffered log writer
CCI-Havoc cnt changed � read ap buffered log writer
CCI-FunRe reentrant call ap buffered log writer

Table 3: Top predictor from each scheme for Apache HTTP

Thermometer Predicate Function

buf2−>len changed � read buffer add buf
g buf−>len changed � read update guts

Table 4: Top CCI-Havoc predictors for Cherokee

Thread 1 Thread 2
int update guts(void) int update guts(void)
{ {

. . . . . .
S1: g buf−>len = 0; S1: g buf−>len = 0;

S2: memcpy(
g buf−>buf + g buf−>len,
str , count);

S3: g buf−>len += count;

S2: memcpy(
g buf−>buf + g buf−>len,
str , count);

S3: g buf−>len += count;
. . . . . .
} }

Figure 9: Simplified illustration of the Cherokee bug

return statements as block-boundaries This lets CCI-FunRe
uncover an accurate failure predictor. Our splitting was per-
formed manually, but could certainly be automated as part of
a process of iterative instrumentation refinement.

FFT and LU from SPLASH-2 are two cases where only
CCI-Prev successfully diagnoses the failures.

Failures in these two applications are non-deterministic
wrong outputs of timing statistics. They are caused by order-
violation bugs, introduced by wrong implementation of the
WAIT FOR END macro in the c.m4.ia32 file used. The
missing macro allows a race between two sets of operations:
(1) assignments at the end of the worker thread to global
variables that maintain the timing information, and (2) the
printing of these global variables at the end of the parent
thread. Our experiment consists of running the given program
3,000 times and marking each run as a failure if the printed
execution finish-time is invalid (i.e., negative or zero).

CCI-FunRe and CCI-Havoc cannot effectively diagnose
these two failures because the root causes have nothing to
do with function reentrance or unexpected value changes be-

tween two uses. However, CCI-Prev does correctly diagnose
these failures benefiting from the secondary instrumentation
sites that leverage stale information per Section 4.1. The top
CCI-Prev predictor, shown in Table 5, corresponds to the
assignment at the end of the worker thread which stores the
correct timing information into initdonetime. Only during
failure runs, this assignment is preceded, instead of followed,
by a read access to initdonetime from the parent thread. The
second-ranked predictor of FFT can also explain the fail-
ure. It shows that failure occurs when the read access to
initdonetime in the parent thread is not preceded by a remote
assignment to initdonetime.

5.3 Performance Results
Table 6 shows the overheads of each instrumentation scheme
with and without sampling for the evaluated applications
(without inserting any random yields). The two bugs in
Apache require different source code configurations and have
different performance features. The three Mozilla bugs can
be triggered with the same input and source code. Therefore,
we only present one number in the table.



Thermometer Predicate Function

Global−>initdonetime remote � write SlaveStart
Global−>initdonetime local � read main

Table 5: Top CCI-Prev predictors for FFT

No Sampling Sampling

Prev FunRe Havoc Prev FunRe Havoc

Apache-1 62.6% 1.1% 27.4% 1.9% 1.8% 2.8%
Apache-2 8.4% 0.2% 4.2% 0.5% 0.2% 0.4%
Cherokee 19.1% 0.3% 2.1% 0.3% 0.4% 0.0%
FFT 169 % 72.8% 33.5% 24.0% 30.0% 5.5%
LU 57827 % 1682 % 1693 % 949 % 926 % 8.9%
Mozilla-JS 11311 % 123 % 7587 % 606 % 97.0% 356 %
PBZIP2 0.2% 0.3% 0.2% 0.2% 0.2% 0.2%

Table 6: Run-time overheads. Overheads below 10% are boldfaced.

Overall, sampling significantly decreases CCI’s monitor-
ing overhead. CCI offers the potential of low-overhead crug
diagnosis in production runs for many of the applications in
our experiments.

Specifically, if we use 10% run-time overhead as a thresh-
old for deployment, then without sampling overheads are
already low enough to deploy CCI-Prev in two out of seven
applications, CCI-Havoc in three applications, CCI-FunRe in
four applications. CCI-FunRe is so simple a scheme that it has
negligible overhead (around 1%) for all I/O intensive applica-
tions (Apache-1, Apache-2, Cherokee, and PBZIP2) in our
experiments. Unfortunately, memory-access intensive appli-
cations, such as the Mozilla JavaScript Engine and SPLASH2
applications, still incur huge monitoring overhead for all three
schemes.

Sampling significantly shrinks overheads for CCI-Prev
and CCI-Havoc. With sampling, CCI-Prev achieves small
enough overhead to deploy in two more applications (Apache-
1 and Cherokee). CCI-Havoc is even better: overhead drops
below 10% for three more applications, pushing the number
of deployable applications to six out of seven. Sampling al-
lows all CCI schemes to achieve negligible (< 3%) overhead
for all I/O intensive applications in our experiments. It also
helps CCI-Havoc achieve small (< 10%) overhead for all
evaluated applications except for the Mozilla JavaScript En-
gine. The large overhead in the later is caused by its extremely
intensive heap accesses and loops. CCI pessimistically as-
sumes that any pointer-crossing operation might touch shared
memory, but this is clearly an over-approximation. We ex-
pect that static thread-escape analysis and CCI-aware loop
unrolling will significantly decrease overhead in the future.

Comparing the different CCI instrumentation schemes,
CCI-Prev has the worst performance because it uses locks
and global flags (i.e., gsample) to coordinate sampling and
predicate evaluation across all threads. CCI-FunRe has the

best performance without sampling, but benefits the least
from sampling, per Section 4.3. CCI-Havoc has a simpler
design than CCI-Prev and is also easier to sample than CCI-
FunRe. Thus, CCI-Havoc achieves the best balance between
performance and failure diagnosis among all three schemes.

What is the minimum overhead CCI can deliver? Theoret-
ically, lower sampling rates yield lower overheads. However,
the overhead can never reach zero. In both CCI-Prev and
CCI-Havoc, the run-time environment maintains a random
number generator, checks the ”gsample” flag if necessary,
and conducts a countdown in order to support random sam-
pling, which determines the lower-bound of CCI monitor-
ing overhead. CCI-Prev’s minimum overhead for FFT, LU,
and Mozilla-JS is 6.6%, 2.8%, and 562%, respectively; CCI-
Havoc’s minimum overhead for these three applications are
4.4%, 0.8%, and 298%, respectively. For CCI-Havoc’s thread-
independent sampling, we can skip the “gsample” flag check
when we know that sampling is currently off and will not be
turned on during several forthcoming sites. Thus we see lower
overheads for this scheme. In general, this minimum over-
head increases with the density of instrumentation sites and
loops in the program. Mozilla-JS has high density of both and
therefore has high minimum overhead. As discussed above,
we expect that improved static analysis will help applications
like Mozilla-JS in the future.

What type of sampling can help CCI-FunRe? As dis-
cussed in Section 4.3, one sampling strategy that can further
decrease the overhead of CCI-FunRe is to statically split func-
tions into multiple groups and release multiple versions of
software with each version monitoring one group. We have
implemented this scheme, and find that it does help CCI-
FunRe to significantly decrease its monitoring overhead on
Mozilla-JS to less than 15%. However, it still has drawbacks.
For example, a single small yet frequently-invoked function



# of False Find Failure-
Program Positives Relevant Race? Overhead

Apache-1 44 X 57%
Apache-2 81 X 29%
Cherokee 10 X 212%
FFT 27 - 20,233%
LU 22 - 41,172%
Mozilla-JS-1 9 X 45,957%
Mozilla-JS-2 24 X 45,957%
Mozilla-JS-3 19 X 45,957%
PBZIP2 11 X 4,803%

Table 7: Bug detection results of Helgrind race detector

could become a performance bottleneck with CCI-FunRe, a
possibility not addressed by this alternative sampling scheme.

How scalable are CCI sampling schemes? Our experi-
ments show that CCI-Havoc has excellent scalability. We
find that with a given workload, adding more threads reduces
CCI-Havoc overhead in our SPLASH2 experiments. This is
because evaluation of CCI-Havoc predicates is completely
independent by thread and therefore can be parallelized per-
fectly. The scalability of CCI-FunRe and CCI-Prev is not as
good as CCI-Havoc, making CCI-Havoc the instrumentation
scheme of choice for very-highly-concurrent applications.

5.4 Comparison With Helgrind Race Detector
To demonstrate the difference between race detectors and
CCI, we applied Helgrind, a state-of-practice happens-before
race detector from Valgrind [2], to all 9 bugs with exactly the
same inputs and experiment settings as those used by CCI.
The results are shown in Table 7.

Helgrind reports many false positives, ranging from 9 in
Mozilla-JS-1 to 81 in Apache-2, which could cost significant
developer effort during failure diagnosis. These false positives
can be categorized into two types. The first type are true
races, but are considered harmless by programmers and are
intentionally left there. For example, all 9 false positives in
Mozilla-JS-1 belong to this type. Prior work reports similar
results [7, 31], and in general no race detector can avoid
these false positives as they genuinely are true races, just
not failure-inducing ones. The second type of false positives
are not truly races at all. Helgrind mistakenly reports them
because it only recognizes synchronizations implemented
by the pthread library. For example, 16 out of the 19 false
positives in Mozilla-JS-3 are actually well-synchronized by
ad-hoc condition variables implemented by the programmers.
A more accurate race detector could avoid reporting these.

Helgrind is able to report races that are related to the
software failure for 7 out of the 9 bugs in our study. However,
due to the different design purposes, the information provided
by Helgrind is usually less useful to failure diagnosis than
that provided by CCI. For example, for the Cherokee bug
shown in Figure 9, Helgrind reports a data race between S1
and S3. Following this clue, programmers might put S1 into a

critical region and S3 into another critical region protected by
the same lock. This would eliminate the data race, but would
not fix the problem. By contrast, CCI-Havoc reports that
Cherokee tends to fail when the global variable g buf−>len
is modified between S1 and S2. This is exactly the root cause
of the failure and can help developers to fix the bug.

Finally, Helgrind has a huge overhead that is obviously
not suitable for production run. This is part of the motivation
of CCI and other sampling-based race detectors [5, 29].

6. Related Work
Pre-deployment tools for detecting races and atomicity vi-
olations fall into two categories: static and dynamic. Static
approaches [12, 17, 21] are conservative and must consider
all potential races. A problem with using static analysis is
that it is difficult to distinguish benign races from those that
can genuinely cause failures. Benign races occur, for exam-
ple, in test-and-set-lock operations and performance counter
updates. Scalability of analyses to target large programs is
also problematic.

Many dynamic analysis tools have been proposed to de-
tect data races and atomicity violation bugs [13, 14, 26, 36].
All have high run-time overheads (around 25× for C appli-
cations) which make them impractical for post-deployment
use. Furthermore, each of these tools targets only a specific
class of crugs viz. either atomicity violations [13, 26] or data
races [36], and often assume a particular synchronization
mechanism. For example, the lockset analysis used in Eraser
[36] applies only to lock-based multi-threaded programs. CCI
targets the root causes of a wide variety of software failures
caused by not just data races but also atomicity violations
and other types of crugs and is agnostic to which particular
synchronization mechanism is used. Furthermore, by focus-
ing on predictors for genuine failures, CCI avoids the false
positives caused by benign races which plague other static
and dynamic approaches.

Some of these issues also apply to recent approaches that
use sampling to improve the performance of race detection,
such as LiteRace by Marino et al. [29] and PACER by Bond
et al. [5]. CCI shares the same sampling philosophy with
LiteRace and PACER. However, they are designed for differ-
ent purposes: CCI targets failure diagnosis while LiteRace
and PACER focus on race detection. Because of this differ-
ence, CCI covers a wider variety of synchronization problems
than LiteRace and PACER, and is explicitly agnostic with
respect to synchronization mechanisms. CCI also leverages
its statistical model and failure information to achieve high
accuracy, while LiteRace and PACER would cause many
false positives due to benign races if used in failure diagnosis,
similar to Helgrind race detector discussed in Section 5.4.
In addition, the sampling techniques used are also different.
LiteRace uses adaptive, thread-independent, bursty sampling;
PACER uses thread-coordinated, bursty sampling. Our three
CCI schemes cover different sampling design choices, in-



cluding both thread-independent, thread-coordinated, and
different bursty designs.

Our earlier and shorter version of this work [41] designed
one predicate (here identified as CCI-Prev) and one basic
thread-coordinated sampling strategy. The present work en-
hances the previous CCI-Prev sampling scheme with tunable,
bursty sample lengths. More importantly, the present work
designs and thoroughly evaluates a wider range of predicates
and sampling strategies; the prior work by Thakur et al. can
now be seen as one point in the much richer design space
explored herein.

Previous work also improves the performance of race
detection by replacing heavyweight vector clocks with an
adaptive lightweight representation in FastTrack [14] and
using adaptive coarse granularity memory monitoring in
RaceTrack [46]. These performance enhancing techniques
are orthogonal to the sampling techniques used in CCI. It
is conceivable to further improve their performance with
sampling. CCI can also use adaptive monitoring granularity
to further improve its performance. Of course, since CCI
is looking at failure diagnosis instead of race detection, the
design tradeoffs will be different than those in RaceTrack.

Much prior research has focused on testing concurrent pro-
grams, such as testing based on synchronization coverage [6],
context-bounded testing [30], race-directed random testing
[38], and unit testing[33]. Record-and-replay for multi-core
machines could also aid in debugging concurrent programs.
Unfortunately, existing proposals are not practical for pro-
duction usage due to high overhead (around 10× slowdown
[10, 22]) or reliance on non-existing hardware [20]. Recent
approaches aim to not detect, but to automatically avoid or
tolerate certain kinds of crugs [4, 28, 34, 35, 43, 45]. This
is orthogonal to our goal of diagnosing the root causes of
concurrent software failures.

DefUse[39] proposes a family of define-use related invari-
ants to capture dynamic data-flow and detect software bugs.
As DefUse is used for in-house testing while CCI is used
in the field, they have focused on different challenges and
proposed different techniques. CCI predicates are different
from DefUse invariants. To maintain simplicity, CCI-Prev
and CCI-Havoc are intentionally ignorant of the access type
(read or write) and hence also ignorant of define-use data
dependencies. CCI also uses sampling techniques to lower
overheads, and a statistical model that handles the resulting
noise/inaccuracy.

CCI is based on the Cooperative Bug Isolation (CBI)
project [23, 25], which uses a sampling-based monitoring
framework to ensure that run-time overheads are low, and
uses statistical techniques on the collected data to infer likely
root causes from this sparsely-sampled data. Subsequent work
has further refined the CBI paradigm to find root causes
of more complex bugs [3, 8], but our experiments have
demonstrated that crugs demand a new approach.

7. Conclusion
We have described CCI, a low-overhead, scalable strategy for
root-cause analysis of crugs. We have implemented the sys-
tem and shown our technique to be effective at finding bugs
in several large, real-world applications. Our approach inten-
tionally tracks far less information than exhaustive dynamic
detectors. Combined with novel approaches to cross-thread
sampling, this allows CCI to achieve very low overheads,
making it practical for use in production environments. At
the same time, the data collected is sufficient to isolate root
causes of failures that are invisible to prior statistical debug-
ging work. In the future we plan to extend this work by explor-
ing other instrumentation schemes that track different con-
currency events, by experimenting with other thread-aware
sampling mechanisms, and by augmenting CCI’s dynamic
approach with complementary static analyses.
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