
GREENTHUMB: Superoptimizer Construction Framework

Phitchaya Mangpo
Phothilimthana

Aditya Thakur Rastislav Bodik Dinakar Dhurjati

University of California, Berkeley
Berkeley, USA

Google Inc.
Mountain View, USA

University of Washington
Seattle, USA

Qualcomm Research
Santa Clara, USA

mangpo@eecs.berkeley.edu avt@google.com bodik@cs.washington.edu dinakard@qti.qualcomm.com

Abstract
Developing an optimizing compiler backend remains a laborious
process, especially for nontraditional ISAs that have been ap-
pearing recently. Superoptimization sidesteps the need for many
code transformations by searching for the most optimal instruction
sequence semantically equivalent to the original code fragment.
Even though superoptimization discovers the best machine-specific
code optimizations, it has yet to become widely-used. We propose
GREENTHUMB, an extensible framework that reduces the cost of
constructing superoptimizers and provides a fast search algorithm
that can be reused for any ISA, exploiting the unique strengths of
enumerative, stochastic, and symbolic (SAT-solver-based) search
algorithms. To extend GREENTHUMB to a new ISA, it is only nec-
essary to implement an emulator for the ISA and provide some
ISA-specific search utility functions.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program Transformation; D.3.4 [Programming Languages]:
Processors-Optimization

Keywords Superoptimization, Program Synthesis, SMT

1. Introduction
Processors with new ISAs are constantly being developed [4, 6, 7],
and optimizing for them requires new architecture-specific opti-
mizations. Peephole optimizations are introduced into compilers
to perform such machine-specific optimizations by applying the
rewrites specified by expert developers. Nevertheless, these human-
written rewrite rules can miss many optimizations, and they can be
buggy even in a well-developed compiler [5].

Superoptimization is a method for obtaining an optimal imple-
mentation of a given program fragment. Instead of applying prede-
fined transformations, a superoptimizer searches for a sequence of
instructions that is equivalent to a reference program and optimal
according to a given performance model. A few x86 superoptimiz-
ers [2, 3, 11] and a LLVM IR supertoptimizer [1] have been devel-
oped and shown to be very effective. However, superoptimization
has yet to become widely-used.

Superoptimization is not commonly used because implementing
one for a new ISA is laborious, and the optimization process can be
slow. First, one must implement a search strategy for finding a can-
didate program that is optimal and correct on the test inputs, as well

as a checker that verifies the equivalence of a candidate program
and a reference program when the candidate program passes on all
test inputs. The equivalence checker is usually constructed using
bounded verification, which requires translating programs into log-
ical formulas. This effort requires debugging potentially complex
logical formulas. Second, it is equally, if not more difficult to de-
velop a search technique that scales to program fragments larger
than ten instructions.

In this paper, we present GREENTHUMB, a framework for
constructing superoptimizers, which is designed to be easily ex-
tended to a new target ISA, unlike existing superoptimizers. A
longer version of this paper—which includes a detailed demon-
stration on how to build an LLVM-IR superoptimizer—can be
found at [9]. GREENTHUMB is available at https://github.com/
mangpo/greenthumb.

2. Framework Overview
Figure 1 depicts the major components of GREENTHUMB and their
interactions. At the core is the cooperative search algorithm that
launches parallel search instances. Each instance consists of mul-
tiple components. First, the encoder-decoder parses an input, ref-
erence program into an IR. It is also used to print optimized pro-
grams to files. On large code fragments, GREENTHUMB performs
a context-aware window decomposition and optimizes a fragment p
in the context of prefix ppre and postfix ppost. A search technique
searches for a candidate program that is semantically equivalent
to p in the context of ppre and ppost, but better according to the
given performance model. An ISA simulator is used to evaluate the
correctness of a candidate program on concrete test cases. If a can-
didate passes all test cases, the search technique verifies the equiv-
alence of the candidate program and the reference program on all
possible inputs using an SMT solver. If they are equivalent, and the
candidate program is better than the current best program, the new

Encoder-
Decoder

Search 
Technique

ISA 
Simulator

Equivalence 
Validator

Search 
Space

IR
(inst … …)

(inst … …)

(inst … …)
(inst … …)

(inst … …)

(inst … …)
(inst … …)

Ppre

Ppost

P

Window
decom-
position

Search Instances

update 
best 
program

get best 
program

return 
optimized 
program

get 
reference 
program

Shared 
Data

input code fragment

Figure 1. Overview of major components in GREENTHUMB

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CC’16, March 17–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-4241-4/16/03...$15.00

http://dx.doi.org/10.1145/2892208.2892233

261



StochasticSymbolic

MachineInst Simulator-
Racket

Search Driver Decomposer
Enumerative

ParserPrinter

New Search Forward-
Backward

Inverse-
Simulator

Enumerator

Simulator-
Rosette

ISA Description

Search Strategy

Validator

Figure 2. Dependency and class diagram. Each box represents a
class. X → Y denotes X depends on Y , while X 99K Y denotes
X is a subclass of Y . Users must extend the classes in yellow to
create a new superoptimizer.

best program is saved to the shared data. If they are not equivalent,
the counterexample is added to the set of concrete test cases.

Each search instance executes one of the three state-of-the-art
search techniques. A symbolic search exploits an SMT solver to
perform the search. An enumerative search implements the LENS
algorithm [10], which refines the equivalence classes only in the
promising candidate subspaces. A stochastic search explores the
search space through a random walk with a cost function that
reflects the correctness and performance of candidate programs
[11]. The cooperative search exploits the unique strengths of the
three techniques to find a better program than each of them can
alone. The search instances aid each other by sharing information
about the best programs they have found so far via the shared data.
The details about the cooperative search, context-aware window
decomposition, and three search techniques can be found in [10].

3. Extending for New ISAs
GREENTHUMB is implemented in Racket, and utilizes inheritance
to provide retargetability. Figure 2 depicts the relationship between
the classes in the framework, where yellow indicates the classes
that need to be extended to support a new ISA.

The classes in the top half of the figure describe the ISA. Users
extend these classes to implement a functional ISA simulator and
a performance model for the ISA. A typical performance model is
the sum of the instructions’ average latencies of a given program.

The classes in the bottom half constitute the search proce-
dure. Users extend the symbolic search by providing the maximal
skeleton of an instruction (e.g., a skeleton of the instruction with
the maximum number of arguments). Users extend the stochastic
search by providing a function to calculate a correctness cost. Users
extend the enumerative search by providing a generator to enumer-
ate all possible instructions. Once the users have extended some
search techniques for the ISA, they obtain the cooperative search
for free. They can also adjust the window size used in the coopera-
tive search’s context-aware window decomposition.

4. Case-Study ISAs
We used GREENTHUMB to build superoptimizers for ARM and
GreenArrays. Instantiating the framework for such drastically dif-
ferent ISAs demonstrates the retargetability of GREENTHUMB.
More information about these two case studies can be found in [10].

ARM is a widely-used RISC architecture. We used the ARM su-
peroptimizer to optimize basic blocks generated by gcc -O3 on
Hacker’s Delight benchmarks, WiBench (a kernel suite for bench-
marking wireless systems), and MiBench (an embedded bench-
mark suite). Table 1 displays information about the basic blocks
that the superoptimizer successfully optimized further. The ‘run-

Program gcc -O3 Output Search Runtime Search
length length time (s) speedup techniques

hd-p18 7 4 9 2.11 E
hd-p21 6 5 1139 1.81 E, SM, ST
hd-p23 18 16 665 1.48 ST,E
hd-p24 7 4 151 2.75 ST,E
hd-p25 11 1 2 17.8 E

wi-txrate5a 9 8 32 1.31 SM,ST
wi-txrate5b 8 7 66 1.29 E
mi-getbit 10 6 612 1.82 SM,E

mi-bitshift 9 8 5 1.11 E
mi-bitcount 27 19 645 1.33 ST,E

mi-susan-391 30 21 32 1.26 ST

Table 1. Code length reduction, search time, runtime speedup over
gcc -O3 code, and search techniques involved in finding the so-
lution. In the ‘program’ column, hd, wi, and mi represent code
from hacker’s delight, WiBench, and MiBench respectively. In the
‘search techniques’ column, SM,E, and ST represent the sym-
bolic, enumerative, and stochastic search, respectively.

time speedup’ column reports the speedup measured on an ac-
tual ARM Cortex-A9. The ‘search techniques’ column reports the
search techniques used by the cooperative search that contributed
to finding the final optimized code. According to the table, super-
optimization offers significant speedup on many programs, and all
three search techniques are necessary for finding the best programs.

GreenArrays GA144 [4] is a low-power, stack-based, 18-bit pro-
cessor, composed of many small cores. Each core consists of two
registers, two 8-entry stacks, and memory. Each core can com-
municate with its neighbors using blocking read and write in-
structions. We used the superoptimizer to optimize code generated
from Chlorophyll [8] without any optimization. For MD5 hash, the
largest program implemented in Chlorophyll, our superoptimizer
found code that was 68% faster than the unoptimized code and only
19% slower than the expert-written code. In three critical functions
of MD5 hash, the superoptimized code was actually 1.3–2.5x faster
than the expert-written code.

References
[1] Souper. URL http://github.com/google/souper.
[2] S. Bansal and A. Aiken. Automatic generation of peephole superopti-

mizers. In ASPLOS, 2006.
[3] T. Granlund and R. Kenner. Eliminating branches using a superopti-

mizer and the gnu c compiler. In PLDI, 1992.
[4] GreenArrays. G144A12 Chip Reference, 2011. URL

http://www.greenarraychips.com/home/documents/greg/
DB002-110705-G144A12.pdf.

[5] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably
correct peephole optimizations with alive. In PLDI, 2015.

[6] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. Modha. A digital neurosynaptic core using embedded crossbar
memory with 45pj per spike in 45nm. In Custom Integrated Circuits
Conference (CICC), 2011 IEEE, 2011.

[7] Mill Computing, 2013. URL http://millcomputing.com/.
[8] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and

R. Bodik. Chlorophyll: Synthesis-aided compiler for low-power spa-
tial architectures. In PLDI, 2014.

[9] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati. Green-
thumb: Superoptimizer construction framework. Technical Report
UCB/EECS-2016-8, EECS Department, University of California,
Berkeley, Feb 2016.

[10] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati. Scaling
up superoptimization. In ASPLOS, 2016.

[11] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization.
In ASPLOS, 2013.

262


