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ABSTRACT

Separation logic is an expressive logic for reasoning about
heap structures in programs. This paper presents a semi-
decision procedure for checking unsatisfiability of formulas
in a fragment of separation logic that includes points-to as-
sertions (x 7→ y), acyclic-list-segment assertions (ls(x, y)),
logical-and, logical-or, separating conjunction, and septrac-
tion (the DeMorgan-dual of separating implication). The
fragment that we consider allows negation at leaves, and in-
cludes formulas that lie outside other separation-logic frag-
ments considered in the literature.

The semi-decision procedure is designed using con-
cepts from abstract interpretation. The procedure uses
an abstract domain of shape graphs to represent a set of
heap structures, and computes an abstraction that over-
approximates the set of satisfying models of a given formula.
If the over-approximation is empty, then the formula is un-
satisfiable.

We have implemented the method, and evaluated it on a
set of formulas taken from the literature. The implementa-
tion is able to establish the unsatisfiability of formulas that
cannot be handled by previous approaches.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Mechanical theorem proving

General Terms

Verification, Logic, Reasoning
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1. INTRODUCTION
Separation logic [33] is an expressive logic for reasoning

about heap-allocated data structures in programs. It pro-
vides a mechanism for concisely describing program states
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by explicitly localizing facts that hold in separate regions of
the heap. In particular, a “separating conjunction” (ϕ1 ∗ϕ2)
asserts that the heap can be split into two disjoint regions
(“heaplets”) in which ϕ1 and ϕ2 hold, respectively [33]. A
“septraction” (ϕ1−⊛ϕ2) asserts that a heaplet h can be ex-
tended by a disjoint heaplet h1 in which ϕ1 holds, to create
a heaplet h1 ∪ h in which ϕ2 holds [39]. The −⊛ operator
is sometimes called existential magic wand, because it is the
DeMorgan-dual of the magic-wand operator“−∗”(also called
separating implication); i.e., ϕ1 −⊛ ϕ2 iff ¬(ϕ1 −∗ ¬ϕ2).

The use of separation logic in manual, semi-automated,
and automated verification tools is a burgeoning field [5,
14, 27, 15, 19]. Most of these incorporate some form of
automated reasoning for separation logic, but only limited
fragments of separation logic are typically handled.

This paper presents a semi-decision procedure for checking
the unsatisfiability of formulas in a fragment of separation
logic. The key insight behind our semi-decision procedure
is that it is designed using concepts from abstract interpre-
tation [12]. Given a formula ϕ, the semi-decision procedure
sets up an appropriate abstract domain that is tailored for
representing information about the meanings of subformu-
las of ϕ. It uses an abstract domain of shape graphs [34]
to represent a set of heap structures. The proof calculus
that we present performs a bottom-up evaluation of ϕ, us-
ing a particular shape-graph interpretation. It computes an
abstract value that over-approximates the set of satisfying
models of ϕ. If the over-approximation is the empty set of
shape graphs, then ϕ is unsatisfiable. If ϕ is satisfiable, then
the procedure reports a set of abstract models.

This use of abstract domains to prove unsatisfiability
places our work squarely in a recent line of research on using
abstract values drawn from an abstract domain as a way to
represent knowledge in implementations of decision proce-
dures [16, 38, 37, 17, 18], a technique we call Satisfiability
Modulo Abstraction (SMA). Our work is the first to apply
this idea to a fragment of separation logic.

One of the main advantages of the SMA approach is that
it is able to reuse abstract-interpretation machinery to im-
plement decision procedures. In [38], for instance, the poly-
hedral abstract domain—implemented in PPL [3]—is used
to implement a decision procedure for the logic of linear ra-
tional arithmetic. In this paper, we use an abstract domain
of shapes—implemented in TVLA [34]—in a novel way to
implement a semi-decision procedure for separation logic.
The challenge was to instantiate the parametric framework
of TVLA to represent the literals precisely and to capture
the spatial constraints of our fragment of separation logic.



The nature of our semi-decision procedure is thus much
different from other decision procedures for fragments of sep-
aration logic that we are aware of. Most previous decision
procedures are proof-theoretic. In some sense, our method
is model-theoretic: it uses explicitly instantiated sets of 3-
valued structures to represent overapproximations of the
models of subformulas.

The fragment of separation logic that our approach han-
dles includes points-to assertions (x 7→ y), acyclic-list-
segment assertions (ls(x, y)), empty-heap assertions (emp),
and their negations; separating conjunction; septraction;
logical-and; and logical-or. The fragment considered only
allows negation at the leaves of a formula (§2.1), but still
contains formulas that lie outside of previously considered
fragments [4, 30, 29, 25, 22]. The semi-decision procedure
can prove validity of implications of the form

ψ⇒(ϕi ∧
∧

j

ψj −∗ ϕj), (1)

where ϕi and ϕj are formulas that contain only ∧, ∨, and
positive or negative occurrences of emp, points-to, or ls as-
sertions; and ψ and ψj are arbitrary formulas in the logic
fragment defined in §2.1. Consequently, we believe that ours
is the first procedure that can prove the validity of formulas
that contain both ls and the magic-wand operator −∗. Fur-
thermore, the semi-decision procedure is able to prove unsat-
isfiability of interesting classes of formulas that are outside
of previously considered fragments, including (i) formulas
that use conjunctions of separating-conjunctions with ls or
negations below separating-conjunctions, such as

(ls(a1, a2) ∗ ls(a2, a3)) ∧ (¬emp ∗ ¬emp)
∧ (a1 7→ e1 ∗ true) ∧ e1 = nil,

and (ii) formulas that contain both ls and septraction (−⊛),
such as (a3 7→ a4 −⊛ ls(a1, a4)) ∧ (a3 = a4 ∨ ¬ls(a1, a3)).
The former are useful for describing overlaid data structures;
the latter are useful in dealing with interference effects when
using rely/guarantee reasoning to verify programs with fine-
grained concurrency [39, 9].

The contributions of our work include the following:

• We show how a canonical-abstraction domain can be
used to overapproximate the set of heaps that satisfy
a separation-logic formula (§2).

• We present rules for calculating the overapproximation
of a separation-logic formula for a fragment of separa-
tion logic that consists of separating conjunction, sep-
traction, logical-and, and logical-or (§4).

• The semi-decision procedure is parameterized by a
shape abstraction, and can be instantiated to han-
dle (positive or negative) literals for points-to or ls

assertions—and hence can prove the validity of impli-
cations of the kind shown in formula (1) (§4).

§3 illustrates the key concepts used in our semi-decision pro-
cedure. Our semi-decision procedure is implemented in a
tool called SMASLTOV (Satisfiability Modulo Abstraction
for Separation Logic ThrOugh Valuation), which is avail-
able at [1]. We evaluated SMASLTOV on a set of formulas
taken from the literature (§5). To the best of our knowl-
edge, SMASLTOV is able to establish the unsatisfiability of
formulas that cannot be handled by previous approaches.

(s, h) |= ϕ1 ∧ ϕ2 iff (s, h) |= ϕ1 and (s, h) |= ϕ2

(s, h) |= ϕ1 ∨ ϕ2 iff (s, h) |= ϕ1 or (s, h) |= ϕ2

(s, h) |= ϕ1 ∗ ϕ2 iff ∃h1, h2. h1#h2 and h1 · h2 = h and
(s, h1) |= ϕ1 and (s, h2) |= ϕ2

(s, h) |= ϕ1 −⊛ ϕ2 iff ∃h1. h1#h and (s, h1) |= ϕ1 and
(s, h1 · h) |= ϕ2

(s, h) |= ¬atom iff (s, h) 6|= atom
(s, h) |= true iff true

(s, h) |= emp iff dom(h) = ∅
(s, h) |= x = y iff s(x) = s(y)
(s, h) |= x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y)
(s, h) |= ls(x, y) iff if s(x) = s(y) then dom(h) = ∅,

else there is a nonempty acyclic
path from s(x) to s(y) in h, and
this path contains all heap cells in h

Figure 1: Satisfaction of an SL formula with respect to a

statelet.

2. SEPARATION LOGIC AND CANONI-

CAL ABSTRACTION
In this section, we provide background on separation logic

and introduce the separation-logic fragment considered in
the paper. We then show how a canonical-abstraction do-
main can be used to approximate the set of models that
satisfy a separation-logic formula.

2.1 Syntax and Semantics of Separation Logic
Formulas in our fragment of separation logic (SL) are de-

fined as follows:

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∗ ϕ | ϕ−⊛ ϕ | atom | ¬atom
atom ::= true | emp | x = y | x 7→ y | ls(x, y)

The set of literals, denoted by lits, is the union of the positive
and negative atoms of SL.

The semantics of SL is defined with respect to memory
“statelets”, which consist of a store s and a heaplet h. A
store is a function from variables to values; a heaplet is a
finite function from locations to locations. Let Loc and Var
be disjoint countably infinite sets not containing nil.

Val
def

= Loc ⊎ {nil} Store
def

= Var→ Val

Heaplet
def

= Loc⇀fin Val Statelet
def

= Store× Heaplet

Loc represents heap-node addresses. The domain of h,
dom(h), represents the set of addresses of cells in the heaplet.
Two heaplets h1, h2 are disjoint, denoted by h1#h2, if
dom(h1)∩dom(h2) = ∅. Given two disjoint heaplets h1 and
h2, h1 · h2 denotes their disjoint union h1 ⊎ h2. A statelet is
denoted by a pair (s, h).

Satisfaction of an SL formula ϕ with respect to statelet
(s, h) is defined in Fig. 1. Furthermore, in this paper, we
consider a formula to be satisfiable only if it is satisfiable
over an acyclic heap. [[ϕ]] denotes the set of statelets that

satisfy ϕ: [[ϕ]]
def

= {(s, h) | (s, h) |= ϕ}.

2.2 2-Valued Logical Structures
We model full states—not statelets—by 2-valued logical

structures. A logical structure provides an interpretation of
a vocabulary Voc = {eq , p1, . . . , pn} of predicate symbols
(with given arities). Vock denotes the set of k-ary symbols.

Definition 1. A 2-valued logical structure S over Voc
is a pair S = 〈U, ι〉, where U is the set of individuals, and
ι is the interpretation. Let B = {0, 1} be the domain of



Table 1: Core predicates used when representing states

made up of acyclic linked lists.

Predicate Intended Meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?
q(v) Does pointer variable q point to memory cell v?
n(v1, v2) Does the n-field of v1 point to v2?

truth values. For p ∈ Voci, ι(p) : U
i → B. We assume

that eq ∈ Voc2 is the identity relation: (i) for all u ∈ U ,
ι(eq)(u, u) = 1, and (ii) for all u1, u2 ∈ U such that u1 and
u2 are distinct individuals, ι(eq)(u1, u2) = 0.

The set of 2-valued logical structures over Voc is denoted
by 2-STRUCT[Voc].

A concrete state is modeled by a 2-valued logical structure
over a fixed vocabulary C of core predicates. Core predicates
are part of the underlying semantics of the linked structures
that make up the states of interest. Tab. 1 lists the core
predicates that are used when representing states made up
of acyclic linked lists.

Without loss of generality, vocabularies exclude constant
and function symbols. Constant symbols can be encoded via
unary predicates, and n-ary functions via n + 1-ary predi-
cates. In both cases, we need integrity rules—i.e., global
constraints that restrict the set of structures considered to
the ones that we intend. The set of unary predicates, Voc1,
always contains predicates that encode the variables of the
formula. In a minor abuse of notation, we overload “x” to
denote both the name of variable x and the unary predi-
cate x(·) that encodes the variable. The binary predicate
n ∈ Voc2 encodes list-node linkages. In essence, the follow-
ing integrity rules restrict each x ∈ Var ⊆ Voc1 to serve as a
constant, and restrict relation n to encode a partial function:

for each x ∈ Var,∀v1, v2 : x(v1) ∧ x(v2) ⇒ eq(v1, v2)

∀v1, v2, v3 : n(v3, v1) ∧ n(v3, v2) ⇒ eq(v1, v2)

2.3 Connecting 2-Valued Logical Structures
and SL Statelets

We use unary domain predicates, typically denoted by d,
d′, d1, . . . , dk ∈ Voc1, to pick out regions of the heap that
are of interest in the state that a logical structure mod-
els. The connection between 2-valued logical structures and
SL statelets is formalized by means of the operation S|(d,·),
which performs a projection of structure S with respect to
a domain predicate d:

S|(d,·)
def

= (s, h),where

s =

(

{(p, u) | p ∈ VarS, u ∈ US , and p(u)}
∪ {(q, nil) | q ∈ VarS and ¬∃v : q(v)}

)

(2)

h = {(u1, u2) | u1, u2 ∈ U
S , d(u1), and n(u1, u2)}. (3)

The subscript “(d, ·)” serves as a reminder that in Eqn. (3),
only u1 needs to be in the region defined by d. We lift the
projection operation to apply to a set SS of 2-valued logical

structures as follows: SS|(d,·)
def

= {S|(d,·) | S ∈ SS}.

2.4 Representing Sets of SL Statelets using
Canonical Abstraction

In the framework of Sagiv et al. [34] for logic-based
abstract-interpretation, 3-valued logical structures provide
a way to overapproximate possibly infinite sets of 2-valued

structures in a finite way that can be represented in a com-
puter. The application of Eqns. (2) and (3) to 3-valued
structures means that the abstract-interpretation machin-
ery developed by Sagiv et al. provides a finite way to over-
approximate a possibly infinite set of SL statelets.

In 3-valued logic, a third truth value, denoted by 1/2,

represents uncertainty. The set T
def

= B ∪ {1/2} of 3-valued
truth values is partially ordered “l < 1/2 for l ∈ B”. The
values 0 and 1 are definite values; 1/2 is an indefinite value.

Definition 2. A 3-valued logical structure S = 〈U, ι〉
is almost identical to a 2-valued structure, except that ι maps
each p ∈ Voci to a 3-valued function ι(p) : U i → T. In
addition, (i) for all u ∈ U , ι(eq)(u, u) ⊒ 1, and (ii) for
all u1, u2 ∈ U such that u1 and u2 are distinct individuals,
ι(eq)(u1, u2) = 0. (An individual u for which ι(eq)(u, u) =
1/2 is called a summary individual.)

The set of 3-valued logical structures over Voc is de-
noted by 3-STRUCT[Voc]. Note that 2-STRUCT[Voc] (
3-STRUCT[Voc].

As we will see below, a summary individual may represent
more than one individual from certain 2-valued structures.

A 3-valued structure can be depicted as a directed graph
with individuals as graph nodes (see Fig. 2). A summary
individual is depicted with a double-ruled border. A unary
predicate p ∈ Var is represented in the graph by having an
arrow from the predicate name p to all nodes of individuals u
for which ι(p)(u) ⊒ 1. An arrow between two nodes indicates
that a binary predicate holds for the corresponding pair of
individuals. (To reduce clutter, in the figures in this paper,
the only binary predicate shown is the predicate n ∈ Voc2.)
A predicate value of 1/2 is indicated by a dotted arrow, a
value of 1 by a solid arrow, and a value of 0 by the absence
of an arrow. A unary predicate p ∈ (Voc1 − Var) is listed,
with its value, inside the node of each individual u for which
ι(p)(u) ⊒ 1. A nullary predicate is displayed in a rectangular
box.

To define a suitable abstraction of 2-valued logical struc-
tures, we start with the notion of structure embedding [34]:

Definition 3. Given S = 〈U, ι〉 and S′ = 〈U ′, ι′〉, two 3-
valued structures over the same vocabulary Voc, and f : U →
U ′, a surjective function, f embeds S in S′, denoted by
S ⊑f S′, if for all p ∈ Voc and u1, . . . , uk ∈ U ,

ι(p)(u1, . . . , uk) ⊑ ι
′(p)(f(u1), . . . , f(uk))

If, in addition,

ι′(p)(u′
1, . . . , u

′
k) =

⊔

u1,...,uk∈U,s.t.f(ui)=u′

i
,1≤i≤k

ι(p)(u1, . . . , uk)

then S′ is the tight embedding of S with respect to

f , denoted by S′ = f(S). (Note that we overload f to
also mean the mapping on structures f : 3-STRUCT[Voc]→
3-STRUCT[Voc] induced by f : U → U ′.)

Intuitively, f(S) is obtained by merging individuals of S and
by defining the valuation of predicates accordingly (in the
most precise way). The relation ⊑id, which will be denoted
by ⊑, is the natural information order between structures
that share the same universe. One has S ⊑f S′ ⇔ f(S) ⊑id

S′. Henceforth, we use S ⊑f S′ to mean “there exists a
surjective f : U → U ′ such that f(S) ⊑id S′”.

However, embedding alone is not enough. The challenge
for representing and manipulating sets of 2-valued structures



is that the universe of a structure is of a priori unbounded
size. Consequently, we need a method that, for a 2-valued
structure 〈U, ι〉 ∈ 2-STRUCT[Voc], abstracts U to an ab-
stract universe U ♯ of bounded size. The idea behind canon-
ical abstraction [34, §4.3] is to choose a subset A ⊆ Voc1
of abstraction predicates, and to define an equivalence rela-
tion ≃AS on U that is parameterized by the logical structure
S = 〈U, ι〉 ∈ 2-STRUCT[Voc] to be abstracted:

u1 ≃AS u2 ⇔ ∀p ∈ A : ι(p)(u1) = ι(p)(u2).

This equivalence relation defines the surjective function
fS
A : U → (U/ ≃AS ), which maps an individual to its equiv-
alence class. We thus have the Galois connection

℘(2-STRUCT[Voc]) −−−→←−−−α
γ

℘(3-STRUCT[Voc])

α(X) = {fS
A (S) | S ∈ X} γ(Y ) = {S | S♯ ∈ Y ∧ S ⊑f S♯},

where fS
A in the definition of α denotes the tight-

embedding function for logical structures induced by the
node-embedding function fS

A : U → (U/ ≃AS ). The ab-
straction function α is referred to as canonical abstraction.
Note that there is an upper bound on the size of each struc-
ture 〈U ♯, ι♯〉 ∈ 3-STRUCT[Voc] that is in the image of α:

|U ♯| ≤ 2|A|—and thus the power-set of the image of α is a
finite sublattice of ℘(3-STRUCT[Voc]).

For technical reasons, it turns out to be convenient to work
with 3-valued structures other than the ones in the image
of α; however, we still want to restrict ourselves to a finite
sublattice of ℘(3-STRUCT[Voc]). With this motivation, we
make the following definition [2]:

Definition 4. A 3-valued structure 〈U ♯, ι♯〉 ∈
3-STRUCT[Voc] is bounded (with respect to abstrac-
tion predicates A) if for every u1, u2 ∈ U

♯, where u1 6= u2,
there exists an abstraction predicate symbol p ∈ A ⊆ Voc1
such that ι♯(p)(u1) = 0 and ι♯(p)(u2) = 1, or ι♯(p)(u1) = 1
and ι♯(p)(u2) = 0. B-STRUCT[Voc,A] denotes the set of
such structures.

Defn. 4 also imposes an upper bound on the size
of a structure 〈U ♯, ι♯〉 ∈ B-STRUCT[Voc,A]—again,

|U ♯| ≤ 2|A|—and thus ℘(B-STRUCT[Voc,A]) is a finite
sublattice of ℘(3-STRUCT[Voc]). It defines the abstract
domain that we use, the abstract domain whose elements
are subsets of B-STRUCT[Voc,A], which will be denoted by
A[Voc,A]. (For brevity, we call such a domain a “canonical-
abstraction domain”, and denote it by A when Voc and A
are understood.) The Galois connection we work with is thus

℘(2-STRUCT[Voc]) −−−→←−−−α
γ

℘(B-STRUCT[Voc,A]) = A[Voc,A]

α(X) = {fS
A (S) | S ∈ X} γ(Y ) = {S | S♯ ∈ Y ∧ S ⊑f S♯}.

The ordering on ℘(B-STRUCT[Voc,A]) = A[Voc,A] is
the Hoare ordering: S1 ⊑ S2 if for all s1 ∈ S1 there exists
s2 ∈ S2 such that s1 ⊑

f s2.

3. OVERVIEW
In this section, we illustrate the concepts that we use in

the semi-decision procedure using a formula that is unsatis-
fiable over acyclic heaps: x 7→ y ∗ y 7→ x. An illustration
of the procedure using a satisfiable formula that contains
septraction is given in [35].

Consider ϕ
def

= x 7→ y ∗ y 7→ x. We want to compute
A ∈ A such that γ(A)|(d,·) ⊇ [[ϕ]]. The key to handling
the ∗ operator is to introduce two new domain predicates

d1 and d2, which are used to demarcate the heaplets that

must satisfy ϕ1
def

= x 7→ y and ϕ2
def

= y 7→ x, respectively. We
have designed A so that there exist A1, A2 ∈ A such that
γ(A1)|(d1,·) = [[x 7→ y]] and γ(A2)|(d2,·) = [[y 7→ x]], respec-
tively. Tab. 2 describes the abstraction predicates we use.
A1 and A2 each consist of a single 3-valued structure, shown
in Fig. 2(b) and Fig. 2(c), respectively. Furthermore, to sat-
isfy ϕ1 ∗ ϕ2, d1 and d2 are required to be disjoint regions
whose union is d. A also contains an abstract value, which
we will call D, that represents this disjointness constraint
exactly. D consists of four 3-valued structures. Fig. 2(a)
shows the “most general” of them: it represents two disjoint
regions, d1 and d2, that partition the d region (where each
of d1 and d2 contain at least one cell). The summary indi-
vidual labeled ¬d,¬d1,¬d2 in Fig. 2(a) represents a region
that is disjoint from d. (See also Fig. 5.)

Note that here and throughout the paper, for brevity the
figures only show predicates that are relevant to the issue
under discussion.

Meet for a Canonical-Abstraction Domain. To impose
a necessary condition for x 7→ y ∗ y 7→ x to be satisfiable,
we take the meet of D, A1, and A2: [[x 7→ y ∗ y 7→ x]] ⊆
D ⊓ A1 ⊓ A2. Figs. 2(d), (e), and (f) show some of the
structures that arise in D ⊓A1 ⊓ A2.

The meet operation in A is defined in terms of the
greatest-lower-bound operation induced by the approxima-
tion order in the lattice B-STRUCT[Voc,A]. Arnold et al.
[2] show that in general this operation is NP-complete; how-
ever, they define an algorithm based on graph matching
that typically performs well in practice [23, §8.3]. To un-
derstand some of the subtleties of meet, consider Fig. 2(d),
which shows one of the structures in D⊓A1 (i.e., Fig. 2(a)⊓
Fig. 2(b)).

• From the standpoint of Fig. 2(b), meet caused the sum-
mary individual labeled “¬d1” to be split into two sum-
mary individuals: “¬d,¬d1,¬d2” and “d,¬d1, d2”.

• From the standpoint of Fig. 2(a), meet caused the sum-
mary individual labeled “d, d1,¬d2” to (i) become a
non-summary individual, (ii) acquire the value 1 for x,
r[n, x], and next [n, y], and (iii) acquire the value 0 for
y and r[n, y].

Fig. 2(e) shows one of the structures in (D ⊓A1) ⊓A2, i.e.,
Fig. 2(d) ⊓ Fig. 2(c), which causes further (formerly indefi-
nite) elements to acquire definite values.

Arnold et al. develop a graph-theoretic notion of the pos-
sible correspondences among individuals in the bounded
structures that are arguments to meet, and structure the
meet algorithm around the set of possible correspondences
[2, §4.2].

Improving Precision Using Semantic-Reduction Op-

erators. Fig. 2(e) still contains a great deal of indefinite
information because the meet operation does not take into
account the integrity constraints on structures. For instance,
for the structures that we use to represent states and SL

statelets, we use a unary predicate next [n, y], which holds
for individuals whose n-link points to the individual that is
pointed to by y. This predicate has an associated integrity
constraint

∀v1, v2.next [n, y](v1) ∧ y(v2)⇒n(v1, v2). (4)



x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]
d1

x y

¬d1

¬is_eq[x,y]()

¬r[n,x]

r[n,y]
next[n,x]
d2

x y

¬d2

¬is_eq[x,y]()

(a) (b) (c)

x y

d,d1,¬d2
d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

(d) (e) (f)

Figure 2: Structures that arise in the meet operation used to analyze x 7→ y ∗ y 7→ x.

In particular, in Fig. 2(e) the individual pointed to by x has
next [n, y] = 1; however, the edge to the individual pointed to
by y has the value 1/2. Similarly, we force the semi-decision
procedure to consider only acyclic heaps by imposing the
integrity constraint ¬∃v1, v2.n(v1, v2) ∧ t[n](v2, v1).

To improve the precision of the (graph-theoretic) meet,
the semi-decision procedure makes use of semantic-reduction
operators. The notion of semantic reduction was intro-
duced by Cousot and Cousot [13]. Semantic-reduction op-
erators are useful when an abstract domain is a lattice
that has multiple elements that represent the same set of
states. A semantic reduction operator ρ maps an abstract-
domain element A to ρ(A) such that (i) ρ(A) ⊑ A, and (ii)
γ(ρ(A)) = γ(A). In other words, ρ maps A to an element
that is lower in the lattice—and hence a “better” represen-
tation of γ(A) in A—while preserving the meaning. In our
case, the semantic-reduction operations that we use convert
a set of 3-valued structures XS into a “better”set of 3-valued
structures XS ′ that describe the same set of 2-valued struc-
tures.

A semantic-reduction operator can have two effects:

1. In some structure S ∈ XS, some tuple p(u) with in-
definite value 1/2 may be changed to have a definite
value (0 or 1).

2. It may be determined that some structure S ∈ XS is
infeasible: i.e., γ(S) = ∅. In this case, S is removed
from XS.

The effect of a precision improvement from a type-1 effect
can cause a type-2 effect to occur. For instance, let u1 and

u2 be the individuals pointed to by x and y, respectively, in
Fig. 2(e).

• Fig. 2(f) is Fig. 2(e) after integrity constraint (4) has
triggered a type-1 change that improves the value of
n(u1, u2) from 1/2 to 1.

• A type-2 rule can then determine that the structure
shown in Fig. 2(f) is infeasible. In particular, the
predicate r[n, x](v) means that individual v is reach-
able from the individual pointed to by x along n-links.
The semantic-reduction rule would find that the values
x(u1) = 1, n(u1, u2) = 1, and r[n, x](u2) = 0 represent
an irreconcilable inconsistency in Fig. 2(f): the first
two predicate values mean that u2 is reachable from
the individual pointed to by x along n-links, which
contradicts r[n, x](u2) = 0.

The operation that applies type-1 and type-2 rules until no
more changes are possible is called coerce (because it coerces
XS to a better representation XS ′). Sagiv et al. [34, §6.4]
and Bogudlov et al. [6, 7] discuss algorithms for coerce.

4. PROOF SYSTEM
This section describes how we compute A ∈ A[Voc,A]

such that A overapproximates the satisfying models of ϕ ∈
SL. The vocabulary Voc and abstraction predicates A are
listed in Tab. 2.

The semi-decision procedure works with judgments of the
form “ϕ, d  A”, where d is a domain predicate. The in-
variant maintained by the semi-decision procedure is that,



Table 2: Voc consists of the predicates shown above, to-

gether with the ones in Tab. 1. All unary predicates are

abstraction predicates; that is, A = Voc1.

Predicate Intended Meaning

is eq[x, y]() Are x and y equal?
next[n, y](v) The target of the n-edge from v is pointed

to by y
t[n](v1, v2) Is v2 reachable via zero or more n-edges from

v1?
r[n, y](v) ∃v1.y(v1) ∧ t[n](v1, v)
d(v) Is v in heap domain d?
link [d, n, y](v) The target of the n-edge from v is either in

d or is pointed to by y

ℓ ∈ lits, d  Aℓ

(ℓ)
ϕ1, d  A1 ϕ2, d  A2

ϕ1 ∧ ϕ2, d  A1 ⊓A2
(∧)

ϕ1, d  S1 ϕ2, d  A2

ϕ1 ∨ ϕ2, d  A1 ⊔A2
(∨)

ϕ1, d1  A1 ϕ2, d2  A2

ϕ1 ∗ ϕ2, d  ([d = d1 · d2]
♯ ⊓ A1 ⊓A2) 

d
(∗)

ϕ1, d1  A1 ϕ2, d2  A2

ϕ1 −⊛ ϕ2, d  ([d2 = d · d1]
♯ ⊓A1 ⊓A2) 

d
(−⊛)

Figure 3: Rules for computing an abstract value that

overapproximates the meaning of a formula in SL.
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Figure 4: The abstract value for ls(x, y) ∈ atom in the

canonical-abstraction domain.

whenever it establishes a judgment ϕ, d  A, A ∈ A overap-
proximates ϕ in the following sense: γ(A)|(d,·) ⊇ [[ϕ]]. Fig. 3
lists the rules used for calculating ϕ, d  A for ϕ ∈ SL. Using
these rules, the semi-decision procedure performs a bottom-
up evaluation of the formula ϕ; if the answer is the empty
set of 3-valued structures, then ϕ is unsatisfiable.

For each literal ℓ ∈ lits, there is an abstract value Aℓ ∈ A
such that γ(Aℓ)|(d,·) = [[ℓ]]. These Aℓ values are used in the
(ℓ)-rule of Fig. 3. Fig. 4 shows the abstract value Als used
for ls(x, y). Als consists of three structures:
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Figure 5: The abstract value for [di = dj · dk]
♯ in the

canonical-abstraction domain.

• Fig. 4(a) represents the empty list from x to y. That
is, x = y and region d is empty.

• Fig. 4(b) represents a singleton list from x to y. That
is, x 6= y and x 6= nil, and for all individuals v in d,
v is reachable from x and link [d, n, y](v) is true. (See
line 6 of Tab. 2.)

• Fig. 4(c) represents acyclic linked lists of length two or
more from x to y.

Fig. 4(b) is the single structure in Ax 7→y. The abstract values
for atoms x = y, true, and emp are straightforward. We
see that it is possible to represent the positive literals true,
emp, x = y, x 7→ y, and ls(x, y) precisely in A; that is, we
have γAl|(d,·) = [[l]]. Furthermore, because the canonical-
abstraction domain A is closed under negation [24, 41], we
are able to represent the negative literals x 6= y, ¬true,
¬emp, ¬ls(x, y), and ¬x 7→ y precisely in A, as well.

The rest of the rules in Fig. 3 can be derived by rein-
terpreting the concrete logical operators using an appro-
priate abstract operator. In particular, logical-and is rein-
terpreted as meet, and logical-or is reinterpreted as join.
Consequently, the (∧)-rule and (∨)-rule are straightforward.
The (∧)-rule and (∨)-rule are justified by the following ob-
servation: if γ(A1)|(d,·) ⊇ [[ϕ1]] and γ(A2)|(d,·) ⊇ [[ϕ2]], then
γ(A1⊓A2)|(d,·) ⊇ [[ϕ1 ∧ ϕ2]] and γ(A1⊔A2)|(d,·) ⊇ [[ϕ1 ∨ ϕ2]].

For a given structure A = 〈U, ι〉 and unary domain pred-
icate di, we use the phrase “individuals in di” to mean the
set of individuals {u ∈ U | ι(di)(u) = 1}.



The (∗)-rule computes A ∈ A such that γ(A)|(d,·) ⊇
[[ϕ1 ∗ ϕ2]]. The handling of separating conjunction ϕ1 ∗ϕ2 is
based on the following insights:

• The domain predicates d1 and d2 are used to capture
the heaplets h1 and h2 that satisfy ϕ1 and ϕ2, respec-
tively. That is,

γ(A1)|(d1,·) ⊇ [[ϕ1]] and γ(A2)|(d2,·) ⊇ [[ϕ2]]. (5)

• [d = d1 ·d2]
♯ ∈ A is used to express the constraint that

the individuals in d1 are disjoint from d2, and that the
individuals in d are the disjoint union of the individuals
in d1 and d2. With only a slight abuse of notation, the
meaning of [d = d1 · d2]

♯ can be expressed as follows:

γ([d = d1 · d2]
♯)|(d,·) ⊇ {(s, h, h1, h2) | h1#h2

and h1 · h2 = h}. (6)

Fig. 5 shows the four structures in the abstract value
[di = dj · dk]

♯, where di, dj , and dk are domain predi-
cates.

• (·) d denotes the structure that results from setting
the abstraction predicates to 1/2 for all individuals
not in d, and setting all domain predicates other than
d to 1/2. In effect, this operation blurs the distinction
between individuals in d1 and d2, and serves as an
abstract method for quantifier elimination.

Using Eqns. (5) and (6) in the definition of ϕ1 ∗ϕ2, we have

[[ϕ1 ∗ ϕ2]]

= {(s, h) | ∃h1, h2. h1#h2 and h1 · h2 = h and (s, h1) |= ϕ1

and (s, h2) |= ϕ2}

⊆ ([d = d1 · d2]
♯ ⊓ A1 ⊓ A2) 

d

The handling of septraction in the (−⊛)-rule is similar to the
handling of separating conjunction in the (∗)-rule, except for
the condition that h2 = h · h1. This requirement is easily
handled by using [d2 = d · d1]

♯. An illustration of the
application of the (−⊛)-rule can be found in [35].

Theorem 1. The rules in Fig. 3 are sound; that is, if the
rules in Fig. 3 say that ϕ, d  A, then γ(A)|(d,·) ⊇ [[ϕ]].

The proof follows from the fact that each of the abstract
operators is sound.

Discussion. As discussed in [31, §4], there exist no methods
that handle negations below a separating conjunction. Our
fragment of separation logic admits negations at the leaves
of formulas, and, thus, is the first approach that can handle
formulas with negations below a separating conjunction.

It is, however, non-trivial to extend our technique to han-
dle general negation. Let (·)c denote the set-complement
operation. Let ¬#(·) denote the abstract negation opera-
tion; that is, γ(¬#(A)) ⊇ γ(A)c, and ¬#(A) ⊒ α(γ(A)c).
Suppose that γ(A)|(d,·) ⊇ [[ϕ]]; in general, γ(¬#(A))|(d,·) is
not guaranteed to overapproximate the models of ¬ϕ.

Furthermore, it is non-trivial to extend our technique to
prove validity of general implications. Suppose that we
would like to prove the validity of ϕ1⇒ϕ2, where ϕ1, ϕ2 ∈
SL. Let A1 overapproximate the set of models of ϕ1, and A2

overapproximate the set of models of ϕ2. A1 ⊑ A2 does not
imply [[ϕ1]] ⊆ [[ϕ2]].

5. EXPERIMENTAL EVALUATION
This section presents the results of our experiments to

evaluate the costs and benefits of our approach. Our imple-
mentation, which is called SMASLTOV, is available together
with our benchmarks at [1]. The experiments were designed
to shed light on the following questions:

1. How fast is the semi-decision procedure?

2. How often is the semi-decision procedure able to de-
termine that a formula is unsatisfiable?

3. For unsatisfiable formulas that are beyond the capa-
bilities of other tools, is the semi-decision procedure
actually able to prove the formulas unsatisfiable?

Setup. The semi-decision procedure is written in OCaml; it
compiles a formula to a proof DAG written in the language
of ITVLA [23, §8]. We ported the frontend of ITVLA to the
latest version of TVLA [26] in order to make use of TVLA’s
enhanced speed [6] and ITVLA’s language features. ITVLA
(i) replaces TVLA’s notion of an intraprocedural control-
flow graph by the more general notion of equation system,
in which transfer functions may depend on more than one ar-
gument, and (ii) supports a more general language in which
to specify equation systems. In particular, the ITVLA lan-
guage supports explicit use of the meet operator [2] for a
canonical-abstraction domain. The abstract-value manip-
ulations in the proof rules of Fig. 3 are performed by the
TVLA backend. TVLA has a significant startup cost and a
smaller shutdown cost. We chose to amortize these costs by
running TVLA in a batch mode, in which a single invocation
of TVLA checks several separation-logic formulas.

We report trimmed means of all time measurements; that
is, we made each measurement five times, discarded the
highest and lowest values, and report the mean of the re-
maining three values. Experiments were run on a single
core of a 2-processor, 4-core-per-processor 2.27 GHz Xeon
computer running Red Hat Linux 6.5.

Test Suite. Our test suite consists of three groups of un-
satisfiable formulas. We tested each group with a single
invocation of TVLA.

• Group 1, shown in Tab. 4, was chosen to evaluate our
procedure on a wide spectrum of formulas.

• Group 2 was created by replacing the Boolean variables

a and b in the template T1
def

= ¬a∧emp∧(a∗b) with the
8 literals lits of SL; that is, true, emp, x 7→ y, ls(x, y),
and their negations. Five of the 64 instantiations of
template T1 are shown in Tab. 5.

• Group 3 was created by replacing the Boolean variables

a, b, and c in the template T2
def

= emp ∧ a ∧ (b ∗ (c−⊛
(emp∧ ¬a))) with the 8 literals lits of SL. Five of the
512 instantiations of template T2 are shown in Tab. 6.

Templates T1 and T2 are based on work by Hou et al. [22]
on Boolean separation logic. Templates T1 and T2 are listed
as formulas 15 and 19, respectively, in [22, Tab. 2]. In total,
there were 599 formulas in our test suite. Tab. 3 summarizes
the characteristics of the corpus based on the occurrences of
the SL operators.

In Tabs. 4, 5, and 6, a X in the U-column indicates that
the semi-decision procedure was able to prove the formula



Table 3: Number of formulas that contain each of the SL operators in Groups 1, 2, and 3. The columns labeled “+”

and “−” indicate the number of atoms occurring as positive and negative literals, respectively.

emp x = y x 7→ y ls(x, y) ϕ ∧ ϕ ϕ ∨ ϕ ϕ ∗ ϕ ϕ−⊛ ϕ Full
+ − + − + − + − Corpus

Group 1 1 5 8 8 13 1 19 10 22 4 12 10 23
Group 2 64 22 0 0 22 22 22 22 64 0 64 0 64
Group 3 512 218 0 0 218 218 218 218 512 0 512 512 512

Total 577 245 8 8 253 241 259 250 598 4 588 522 599

Table 4: Unsatisfiable formulas. The time is in seconds.

Formula U Time

(1) a1 7→ a2 ∧ ¬ls(a1, a2) X 0.12
(2) a1 7→ a2 ∗ a2 7→ a1 X 0.08
(3) ¬emp ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 0.27
(4) a1 6= a2 ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 0.25
(5) (ls(a1, a2) ∗ ls(a2, a3)) ∧ ¬ls(a1, a3) X 0.85
(6) ls(a1, a2) ∧ emp ∧ a1 6= a2 X 0.09
(7) (a1 7→ a2∗true)∧(a2 7→ a3∗true)∧(true∗a3 7→

a1)
X 0.72

(8) (a1 7→ a2 −⊛ true) ∧ (a1 7→ a2 ∗ true) X 0.77

(9) (ls(a1, a2) ∗ ¬ls(a2, a3)) ∧ ls(a1, a3) X 2.02
(10) ls(a1, a2) ∧ ls(a1, a3) ∧ ¬emp ∧ a2 6= a3 X 0.13
(11) (ls(a1, a2)∗true∗a3 7→ a4)∧(true∗(ls(a2, a1)∧

a2 6= a1))
X 7.94

(12) (a1 7→ a2∗ls(e1, e2))∧(a2 7→ a3∗¬emp)∧(a3 7→
a1 ∗ ¬a5 7→ a6 ∗ true)

X 4.64

(13) (¬emp ∗ ¬emp) ∧ (a1 = nil∨ a1 7→ e1 ∨ ((a1 7→
e1 ∧ e1 = nil) ∗ true)) ∧ ls(a1, a2)

X 0.20

(14) ((ls(a1, a2)∧ a1 6= a2) ∗ (ls(a2, a3) ∧ a2 6= a3))∧
((ls(a4, a1) ∧ a4 6= a1) ∗ a1 7→ e1 ∗ true)

X 1.45

(15) (ls(a1, a2) −⊛ ls(a1, a2)) ∧ ¬emp X 0.18
(16) (a3 7→ a4−⊛ ls(a1, a4))∧ (a3 = a4∨¬ls(a1, a3)) X 0.20
(17) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a1, a4)) ∧

¬ls(a1, a3)
X 0.65

(18) ((a2 7→ a3−⊛ ls(a2, a4))−⊛ ls(a3, a1))∧ a2 = a4 X 0.62
(19) (a1 7→ a2 −⊛ ls(a1, a3)) ∧ (¬ls(a2, a3) ∨ (true ∧

(a1 7→ e1 ∗ true)) ∨ a1 = a3)
X 0.45

(20) ((ls(a1, a2) ∧ a1 6= a2)−⊛ ls(e1, e2)) ∧ e1 6= a1 ∧
e2 = a2 ∧ ¬ls(e1, a1)

X 0.88

(21) a1 6= a4 ∧ (ls(a1, a4) −⊛ ls(e1, e2)) ∧ a4 = e2 ∧
¬ls(e1, a1)

X 1.23

(22) ((ls(a1, a2) ∧ a1 6= a2)−⊛ ls(e1, e2)) ∧ e2 6= a2 ∧
e1 = a1 ∧ ¬ls(a2, e2)

X 0.89

(23) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a3, a1)) ∧
(¬ls(a4, a1) ∨ a2 = a4)

? 0.71

Table 5: Example instantiations of T1
def

= ¬a∧emp∧ (a∗ b),

where a, b ∈ lits. The time is in seconds.

Formula U Time

(1) ¬(a1 7→ a2) ∧ emp ∧ (a1 7→ a2 ∗ a3 7→ a4) X 0.83
(2) a1 7→ a2 ∧ emp ∧ (¬(a1 7→ a2) ∗ a3 7→ a4) X 0.32
(3) ¬(a1 7→ a2) ∧ emp ∧ (a1 7→ a2 ∗ ls(a3, a4)) X 0.62
(4) ls(a1, a2) ∧ emp ∧ (¬ls(a1, a2) ∗ ls(a3, a4)) X 8.46
(5) ls(a1, a2) ∧ emp ∧ (¬ls(a1, a2) ∗ ¬ls(a3, a4)) X 10.3

unsatisfiable; a ? indicates that the semi-decision procedure
was not able to prove the formula unsatisfiable.

Though not shown in this section, we also evaluated our
procedure on a set of satisfiable formulas. The procedure
reports a set of abstract models when given a satisfiable
formula (see [35]).

Table 6: Example instantiations of T2
def

= emp∧a∧(b∗(c−⊛

(emp ∧ ¬a))), where a, b, c ∈ lits. The time is in seconds.

Formula U Time

(1) emp ∧ ls(a1, a2) ∧ (ls(a3, a4) ∗ (ls(a5, a6) −⊛
(emp ∧ ¬ls(a1, a2))))

X 0.37

(2) emp∧¬emp∧(ls(a3, a4)∗(¬(a5 7→ a6)−⊛(emp∧
emp)))

X 0.17

(3) emp∧a1 7→ a2∧ (a3 7→ a4∗ (a5 7→ a6−⊛ (emp∧
¬(a1 7→ a2))))

X 0.49

(4) emp ∧ ¬ls(a1, a2) ∧ (¬ls(a3, a4) ∗ (ls(a5, a6) −⊛
(emp ∧ ls(a1, a2))))

X 3.97

(5) emp∧¬ls(a1, a2)∧(¬ls(a3, a4)∗(emp−⊛(emp∧
ls(a1, a2))))

X 9.51

We now answer Questions 1–3 posed at the beginning of
this section using the three groups of formulas.

Group 1 Results. The running time of our procedure on
the formulas listed in Tab. 4 was often on the order of one
second. The TVLA startup and shutdown time for Group
1 was 10.9 seconds. The procedure was able to prove un-
satisfiability for all formulas, except (23). We believe that
formulas (9)–(23) are beyond the scope of previously ex-
isting tools. Formulas (9)–(14) demonstrate that we can
handle formulas that describe overlapping data structures,
including conjunctions of separating conjunctions. Formulas
(15)–(21) demonstrate that we can handle formulas contain-
ing ls and septraction together.

Group 2 Results. The 64 formulas instantiated from the

template T1
def

= ¬a∧ emp∧ (a ∗ b) took between 0.0003 and
10.31 seconds to check, with a mean of 0.56 and a median
of 0.03 seconds. Our procedure was able to prove unsatisfia-
bility for all 64 formulas. The TVLA startup and shutdown
time for Group 2 was 3.39 seconds. All instantiations of T1

that contain an occurrence of the ls predicate are beyond
the capabilities of existing tools. The formulas that took
the most time were (5) and (4) in Tab. 5. In both cases, a
large amount of time was required because of the presence
of ¬ls, which is represented by 24 structures—a much larger
number than is needed for the other literals.

Group 3 Results. The 512 formulas instantiated from the

template T2
def

= emp∧a∧(b∗(c−⊛(emp∧¬a))) took between
0.0001 and 9.51 seconds to check using our procedure, with a
mean of 0.12, and a median of 0.04 seconds. Our procedure
was able to prove unsatisfiability for all 512 formulas. The
TVLA startup and shutdown time for Group 3 was 10.12
seconds. All instantiations of T2 that contain an occurrence
of ls are beyond the capabilities of existing tools.

6. RELATED WORK
The literature related to reasoning about separation logic

is vast, and we mention only a small portion of it in this



section. Decidability results related to first-order separa-
tion logic are discussed in [10, 8]. A fragment of separation
logic for which it is decidable to check validity of entailments
was introduced by Berdine et al. [4]. The fragment includes
points-to and linked-list predicates, but no septraction, or
negations of points-to or linked-list predicates. More recent
approaches deal with fragments of separation logic that are
incomparable to ours [29, 25, 22]; in particular, none of the
latter papers handle linked lists. We based our experiments
on formulas listed in Hou et al.’s work on Boolean separa-
tion logic [22]—the only paper we found that listed formulas
outside the syntactic fragment defined by Berdine et al. We
believe that our technique represents the first important step
in designing a verification system that uses a richer fragment
of separation logic.

Most approaches to separation-logic reasoning use a syn-
tactic proof-theoretic procedure [4, 30]. Two exceptions are
the approaches of Cook et al. [11] and Enea et al. [20],
which use a more semantics-based approach: they represent
separation-logic formulas as graphs in a particular normal
form, and then prove that one formula entails another by
finding a homomorphism between the corresponding graphs.
Our approach is also semantics-based, but has more of an
algebraic flavor: our method performs a bottom-up evalua-
tion of a formula ϕ using a particular shape-analysis inter-
pretation (Fig. 3); if the answer is the empty set of 3-valued
structures, then ϕ is unsatisfiable.

To deal with overlaid data-structures, Enea et al. [20]
introduce the ∗w operator: the ∗w operator specifies data
structures that share sets of objects as long as they are built
over disjoint sets of fields. Their approach, however, does not
handle conjunctions of separating conjunctions or negations
of the ls-predicate. Thus, [20] cannot handle formulas (9)–
(14) in Tab. 4, even though these formulas do not contain
septraction. Note that, for instance, the logical conjunction
in formula (9) cannot be replaced by the ∗w operator.

Piskac et al. [31] present a decision procedure for a de-
cidable fragment of separation logic based on a reduction
to a particular decidable first-order theory. Unlike our ap-
proach, the approach in [31] does not handle septraction or
negations below a separating conjunction.

The explicit use of abstract values drawn from an abstract
domain as a way to represent knowledge in implementations
of decision procedures is a technique that has been receiving
increased attention of late [16, 38, 37, 17, 18]. Our work is
the first to apply this idea to a fragment of separation logic.

Many researchers pigeonhole TVLA [26] as a system ex-
clusively tailored for “shape analysis”. In fact, it is actually
a metasystem for (i) defining a family of logical structures
2-STRUCT[Voc], and (ii) defining canonical-abstraction do-
mains whose elements represent sets of 2-STRUCT[Voc].
The ITVLA [23, §8] variant of TVLA is a different packaging
of the classes that make up the TVLA implementation, and
demonstrates better that canonical abstraction is a general-
purpose method for abstracting the structures that are a
logic’s domain of discourse.

To simplify matters, the separation-logic fragment ad-
dressed in this paper does not allow one to make assertions
about numeric-valued variables and numeric-valued fields.
Our approach could be extended to support such capabilities
using methods developed in work that combines canonical
abstraction with numeric abstractions [21, 28].

7. CONCLUSION AND FUTURE WORK
This paper showed how to create a semi-decision proce-

dure for a fragment of separation logic. The fragment of sep-
aration logic that we use has empty-heap assertions, equali-
ties, points-to assertions, acyclic-list-segment assertions, and
their negations as literals; it provides the connectives ∗, −⊛,
∧, and ∨. This fragment contains formulas that cannot be
handled by previous approaches.

For each SL formula ϕ, the procedure performs a bottom-
up evaluation of the formula, using a particular shape-
analysis interpretation; if the answer is the empty set of
3-valued structures, then ϕ is unsatisfiable. Thus, the work
reported in the paper supports the thesis that abstract-
interpretation concepts can help in the design and imple-
mentation of decision procedures.

Moreover, if ϕ is satisfiable, then the procedure reports
a set of abstract models—i.e., a value in the canonical-
abstraction domain that overapproximates [[ϕ]]. As we have
shown in other work (using a variety of other techniques,
and for a variety of other logics), a decision-procedure-like
method that is prepared to return such “residual” answers
provides a way to generate sound abstract transformers au-
tomatically [32, 40, 38, 36]. In particular, when ϕ specifies
the transition relation between the pre-state and post-state
of a concrete transformer τ , a residuating decision procedure
provides a way to create a sound abstract transformer τ ♯ for
τ , directly from a specification in logic of τ ’s concrete seman-
tics. Consequently, the work reported in the paper also sup-
ports the thesis that abstract-interpretation-based decision
procedures provide much promise for automating the con-
struction of program-analysis tools. Using our semi-decision
procedure, we now have a way to create abstract transform-
ers based on canonical-abstraction domains directly from a
specification of the semantics of a language’s concrete trans-
formers, written in SL.

Although TVLA and separation logic have both been ap-
plied to the problem of analyzing programs that manipulate
linked data structures, there has been only rather limited
crossover of ideas between the two approaches. Our semi-
decision procedure is built on the connection between TVLA
states and SL statelets described in §2.3, which represents
the first formal connection between the two approaches. For
this reason, the semi-decision procedure should be of inter-
est to both communities: (i) For the TVLA community,
the procedure illustrates a different and intriguing use for
canonical-abstraction domains. The domains that we use
are tailored for the particular formula, but, more impor-
tantly, provide an encoding that can be connected to the
SL semantics: see Eqns. (2) and (3) in §2.3, and the use of
domain predicates to express disjointness in §3. (ii) For the
separation-logic community, the procedure shows how using
TVLA and canonical-abstraction domains leads to a model-
theoretic approach to the decision problem for SL that is
capable of handling formulas that are beyond the capabili-
ties of existing tools.

We believe that our approach has the potential to be ex-
tended to deal with richer fragments of separation logic—in
particular, fragments that contain both separating implica-
tion and acyclic linked-list predicates.
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