Cooperative Crug Isolation -

Aditya Thakur
adi@cs.wisc.edu

Ben Liblit
liblit@cs.wisc.edu

Rathijit Sen
rathijit@cs.wisc.edu

Shan Lu
shanlu@cs.wisc.edu

Computer Sciences Department
University of Wisconsin—Madison

ABSTRACT

With the widespread deployment of multi-core hardware, writing
concurrent programs has become inescapable. This has made fixing
concurrency bugs (or crugs) critical in modern software systems.
Static analysis techniques to find crugs such as data races and atom-
icity violations are not scalable, while dynamic approaches incur
high run-time overheads. Crugs pose a greater challenge since they
manifest only under specific execution interleavings that may not
arise during in-house testing. Thus there is a pressing need for
a low-overhead program monitoring technique that can be used
post-deployment.

We present Cooperative Crug Isolation (CCI), a low-overhead
instrumentation technique to isolate the root causes of crugs. CCI
inserts instrumentation that records occurrences of specific thread
interleavings at run-time by tracking whether successive accesses to
a memory location were by the same thread or by distinct threads.
The overhead of this instrumentation is kept low by using a novel
cross-thread random sampling strategy. We have implemented CCI
on top of the Cooperative Bug Isolation framework. CCI correctly
diagnoses bugs in several nontrivial concurrent applications while
incurring only 2—-7% run-time overhead.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
statistical methods; D.2.5 [Software Engineering]: Testing and
Debugging—debugging aids

General Terms

Experimentation, Reliability

*Supported in part by AFOSR grants FA9550-07-1-0210 and
FA9550-09-1-0279; LLNL contract B580360; NSF grants CCF-
0621487, CCF-0701957, and CNS-0720565; and a Claire Boothe
Luce faculty fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF or other institutions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WODA °09, July 20, 2009, Chicago, Illinois, USA.

Copyright 2009 ACM 978-1-60558-656-4/09/07 ...$5.00.

35

Keywords

concurrency, statistical debugging, random sampling, bug isolation

1. INTRODUCTION

Concurrency bugs (such as data races [5}23] and atomicity viola-
tion bugs [6l|17]) are among the most troublesome software bugs.
Unlike sequential bugs, concurrency bugs manifest under only spe-
cific thread interleavings. This non-determinism makes concurrency
bugs difficult to expose during in-house testing. As a result, many
concurrency bugs slip into production runs and manifest at user
sites. Making things even worse, many concurrency bugs can cause
severe software failures, varying from data corruption to program
crashes [8]. Concurrency bugs have caused real-world disasters
in the past, such as the Northeastern Blackout of 2003. Software
reliability is increasingly threatened by concurrency bugs, because
of the prevalent use of multi-core hardware and the increasing use of
concurrent programs. Thus, tools that can diagnose production-run
failures in concurrent software are sorely needed.

To date, it has been extremely difficult to diagnose production-run
software failures caused by concurrency bugs. There are no concur-
rency bug detection tools suitable for production usage, because ex-
isting tools either have huge overhead (10x-100x slowdown [23])
or require specialized hardware that does not yet actually exist [17].
Furthermore, it can be very hard for developers to reproduce field-
detected software failures, because the manifestation of concurrency
bugs demands special interleavings. Even if the bug-triggering input
is known, it may still take developers several days to reproduce a
concurrency bug [20]. As a result, failure diagnosis is a nightmare
for the developers of concurrent programs.

Statistical debugging pioneered by the Cooperative Bug Isola-
tion project (CBI) 3}, |14} [16]] aims to automatically pinpoint likely
causes of failure. It achieves this goal through three steps. First, it
instruments the buggy program at particular program points so as
to monitor various predicates on program state and behavior, such
as variable value predicates (e.g., X > y) or the paths followed at
conditional branches. Then, it collects information about program
execution by collecting these predicate samples from both success-
ful and failing runs. Finally, by applying statistical techniques on
this aggregated information, CBI finds good bug predictors by iden-
tifying predicates that are highly correlated with failure. The CBI
framework achieves low monitoring overhead by way of sparse ran-
dom sampling of the instrumentation and by collecting information
from many user sites.

Prior CBI work has not targeted concurrent programs and is not ef-
fective in diagnosing software failures caused by concurrency bugs.
Failures caused by concurrency bugs are triggered by specific inter-
leavings (i.e., execution order among concurrent memory accesses).

mailto:adi@cs.wisc.edu
mailto:rathijit@cs.wisc.edu
mailto:liblit@cs.wisc.edu
mailto:shanlu@cs.wisc.edu

Thread 1 Thread 2

len = strlen(str);
memcpy/(&buf[cnt], str, len);

len = strlen(str);
memcpy(&buflcnt], str, len);
cnt += len;

\

cnt += len;

Figure 1: Atomicity violation bug from the Apache HTTP
Server. The variables buf and cnt are both shared.

Many of these failures cannot be explained by the types of predicates
collected by prior CBI work. shows a concurrency-bug
example, simplified from a real-world bug in the Apache HTTP
Server [1]]. In this example, shared variable cnt is an index to the
tail of a shared buffer buf. Every thread writes log message into
the buffer based on the index. Unfortunately, programmers did not
synchronize conflicting accesses to these two variables. As a result,
under the interleaving shown in[Figure I] buffer update and index
accesses from different threads compete with each other and lead to
garbage data in the log.

Previous CBI tools fail to diagnose this Apache problem. In our
experiment, none of the standard predicates behaves differently in
failing versus successful runs with at least 95% confidence (CBI’s
standard acceptance threshold to counteract the effects of sampling
noise). The reason is that the software’s wrong behavior (garbage
log data) can happen with normal variable values (e.g., the garbage
log can happen when cnt remains in bound) and normal execution
paths. This example illustrates the need to design new predicates in
order to diagnose software failures due to concurrency bugs.

In this paper, we present Cooperative Crug Isolation (CCI), a low-
overhead dynamic strategy for diagnosing production-run failures
in concurrent programs. CCI builds on the CBI framework and
employs the same underlying approach to pinpointing root causes of
failure. We focus on the following two problems in order to extend
CBI to address concurrency bugs:

What type(s) of predicates are suitable for diagnosing crug
problems? A good predicate should balance the predictive power
and performance. Poorly designed predicates may never be able to
explain a software failure. Yet some run-time information, such
as global execution orders, is quite costly to collect. Costly predi-
cates must use low sampling rates in order to provide performance
guarantees during production runs.

How can we track predicates that involve multiple threads?
In previous CBI work, predicate sampling decisions were always
made independently on multiple threads. This is not suitable for
interleaving-related predicates. Sampling must be coordinated across
threads in order to track interleaving-related information.

To address the first problem, a new type of predicates is designed
in CCI to record whether two successive accesses to a shared mem-
ory location were by the same thread or distinct threads. In particular,
CClI instrumentation keeps track of which thread last accessed each
shared memory location. At a particular program point / that ac-
cesses memory location /, the value of CCI predicate remotey is true
if the thread that last accessed [differs from the current thread, and

36

is false otherwise. The other CCI predicate local; represents the
opposite of remotej.

Using this simple instrumentation scheme CCI is able to target
a wide variety of concurrency bugs such as races and atomicity
violations, as the occurrence of races or atomicity violations can
usually affect the values of corresponding CCI predicates. Further-
more, CCI leverages statistical analysis to maintain much fewer
false positives than many previous crug detection tools [23]]. Many
previous detection tools have high false positive rates, because races
and atomicity violations could be benign. However, CCI predicates
could be true when the program is well-synchronized. This does not
cause false positives (i.e., reporting predicates as bug predictors even
though they have nothing to do with the cause of the failure) in CCI,
because the statistical analysis in CCI leverages information about
whether a particular run succeeded or failed. CCI tries to correlate
the values of the predicates with failures and figures out whether a
predicate being true during execution can imply a failed execution.
A false positive occurs only if a predicate was observed to be true in
all (or most) failure runs and in no (or few) successful runs and had
nothing to do with the actual cause of the failure. This is unlikely to
occur in practice and we observe that the statistical analysis used in
CCI prunes away most false positives and reports predictors which
are precisely those which are correlated to the cause of the failure.

Similar to CBI, run-time overhead is kept low by sampling the
instrumentation code. However, CCI requires sampling to be on in
multiple threads simultaneously. Thus, CCI extends the current CBI
sampling using a novel cross-thread random sampling strategy to
ensure correct recording of its interleaving-related predicates.

Specifically, this paper makes the following contributions:

e We extend the CBI framework to track predicates that indicate
whether two successive accesses to a memory location were
by the same thread or not. This instrumentation scheme can
help diagnose several types of crugs such as data races and
atomicity violations.

e We extend the CBI sampling scheme to coordinate the predi-
cate sampling from different threads in concurrent programs.
This extension allows CCI to collect accurate interleaving
information.

e We validate CCI by using it to identify the root causes of real-
world failures in several concurrent applications, including
Apache [1f], PBZIP2 [7], and SPLASH-2 [28]] benchmarks.

Preliminary experimental results show that CCI nicely com-
plements CBI to diagnose concurrent program failures. The
predictors reported by CCI can accurately point to the exact
reason for the problem. On the other hand, previous CBI
tools are unable to provide any predictors for these two ap-
plications. Furthermore, CCI achieves this excellent failure
diagnosis with small run-time overhead (mostly within 10%),
thanks to its sampling mechanism.

The remainder of this paper is organized as follows. [Section 2
provides an overview of the CBI framework. [Section 3| describes
our instrumentation scheme in detail. We describe the experimental

results in[Section 4 We describe previous approaches in[Section

Section 6|concludes and suggests future directions for this work.

2. BACKGROUND

CCI builds upon the Cooperative Bug Isolation (CBI) [14,16] ap-
proach and framework. CBI is a low-overhead statistical debugging
technique. It collects information about program execution from

both successful and failing runs and applies statistical techniques to
identify the likely cause of the software failure.

CBI carries out a source-to-source transformation of the program
which adds instrumentation code to the original program to collect
the values of predicates at particular program points, called instru-
mentation sites. In this paper, we denote recording the value of
predicate p at instrumentation site s as record(s,p). The traditional
CBI framework tracks following types of predicates:

1. Branches: Each branch is an instrumentation site. Two predi-
cates indicating whether the true or false branches were taken
are associated with each site.

2. Returns: Each function return point is an instrumentation
site. A set of three predicates at each site track whether the
returned value is negative, zero, or positive.

3. Scalar-pairs: At each assignment to a scalar variable X, one
instrumentation site is created for each other same-type in-
scope variable y. Each such site has three predicates, record-
ing whether x is smaller than, larger than, or equal to y. Value
comparisons between x and program constants are also added,
one instrumentation site per constant.

During execution, the instrumentation code collects such predi-
cate profiles. This information is aggregated across multiple runs
of a program in the form of feedback report. The feedback report
of each execution is a bit vector, with two bits for each predicate
(observed and true), and one final bit indicating execution success
or failure.

Using these reports, CBI assigns a score to every available predi-
cate and identifies the best failure predictor among them. Intuitively,
a good predictor should be both sensitive (accounts for many failed
runs) and specific (does not mis-predict failure in successful runs).
In other words, a sensitive predictor is true in most failed runs but
could also be true in many successful runs. On the other hand, a
specific predictor is true in few successful runs but could also be
true in few failed runs. Thus, a predicate is designated to be a good
predictor if it is true in most failed runs and very few successful
runs. CBI’s scoring model considers both sensitivity and specificity
to select top predictors. The best predictor is expected to point to a
software bug that is responsible for many observed software failures.
An iterative ranking and elimination process continues to pick up
the best remaining predicate to explain the remaining failures until
all failures are explained or all available predicates are discarded.

Monitoring overheads must be very low for this approach to be
feasible in post-deployment environments. The CBI framework
achieves this goal through sparse random sampling. At run time,
each time an instrumentation site is reached, a Poisson (memory-
less) random choice decides whether or not the predicate information
associated with that site will be collected. In this paper, “[[instr;]]?”
will be used to denote the random sampling of the instrumentation
instr. Sparse sampling means that most instrumentation code is not
run, and therefore most run-time events are not actually observed.
However sampling is statistically fair, so the small amount of data
that is collected is an unbiased representation of the complete-but-
unseen data. Therefore, given a large number of user runs and
appropriate statistical models, the root causes of failure emerge as
consistent signals through the sparsely-sampled noise.

3. CCIDESIGN

The ultimate goal of CCI is to automatically identify which in-
structions are involved in a software failure caused by concurrency
bugs, such as races and atomicity violations. This section describes

37

Thread 1 Thread 2

mut = NULL;

™

S: unlock(mut);

(a) Failing run: localg = false, remoteg = true

lock(mut);
S: unlock(mut);

mut = NULL;

(b) Correct run: localg = true, remoteg = false

Figure 2: State of CCI predicates in two different thread inter-
leavings. Above code is simplified from a data race bug from
PBZIP2 in which thread 1 nullifies the shared mutex variable,
mut, when thread 2 is still using mut.

the predicates that CCI uses, how CCI monitors these predicates at
run time, and how CCI conducts sampling.

Once run-time data collection is complete, CCI uses statistical
models to identify strong failure predictors among the collected
data. We omit a detailed discussion of these statistical models here,
as they are identical to those used in prior CBI work. The main
focus of the present research is how to collect informative raw data
efficiently in the first place.

3.1 Predicate Design

CCl instrumentation balances failure-predictive capability against
profiling complexity. We do not attempt to gather anything ap-
proaching a complete trace, but rather collect just a small amount of
potentially-informative data that is readily available with minimal
overhead. In particular, we track whether two successive accesses
to a given location were by two distinct threads or were by the same
thread both times.

CCI monitors each instruction / that might access a shared loca-
tion g. Each such instruction can exhibit two possible behaviors
at run time: either the thread now accessing g at / was the same
thread that accessed g previously, or the previous access was by a
different thread. In CBI terms, we say that / constitutes a single
instrumentation site with two predicates: local; is true if the previ-
ous access was from the same thread, while remote; is true if the
previous access was from a different thread. Each time instruction /
is executed, exactly one of these two predicates must be true, and
the other false. In the example shown in CClI records
that remoteg is true (and localg is false) when the execution follows
Conversely, CCI records that localy is true (and remotes
is false) when the interleaving is like that in [Figure 2b}

The above CCI predicates are closely tied to the root causes of
concurrency bugs (e.g., atomicity violations and data races). Most
atomicity violation bugs happen when one thread’s consecutive
accesses to some shared variable are non-serializably interleaved
with accesses from a different thread [[17} 27]. The Apache bug
shown in is an example of this. Such interleavings can
be captured by our remote; predicates. Data races occur when
conflicting accesses from different threads touch the same shared
variable without proper synchronization. The PBZIP2 bug shown in

1 lock(glock);

2 record(s, gTid != curTid);
3 gTid = curTid;

4 access(Q);

5 unlock(glock);

Figure 3: Basic instrumentation

[Figure 2|is a typical example of a data race bug, and likewise can be
recognized using our predicate design.

Our CCI predicates are definitely not equivalent to atomicity
violation predicates or race predicates. Extra information, including
memory access type (i.e., read vs. write) and synchronization (i.e.,
when and which locks are acquired and released), is needed to
precisely profile atomicity violation and data races. We choose to
ignore this information and keep CCI predicates simple for following
reasons:

1. Performance. Simple predicates allow more intensive sam-
pling during production runs.

2. Generality. Our simple predicates can cover more than one
type of concurrency bug, and are intentionally ignorant of the
program’s synchronization mechanisms.

3. Accuracy. Though simple, our predicates do not cause exces-
sive false positives, because CBI’s statistical models automat-
ically prune predicates that do not explain actual, observed
software failures.

3.2 Predicate Collection

As in previous CBI tools, we insert instrumentation at compile
time to record predicate states when the code runs. This instrumenta-
tion is most-readily described as a source-to-source transformation
of C code. We first present a basic scheme for static global vari-
ables only, then offer an enhanced scheme that considers accesses
to shared memory locations across possibly-aliased pointers.

3.2.1 Basic Scheme

Our basic scheme maintains a global variable gTid for each global
variable g, representing the latest thread that accesses g. We compare
the current thread ID with gTid before every access to g, then
update gTid with the current thread ID to set up for the next such
comparison. In this manner we can easily record the state of local;
and remote; at each instruction / that accesses g.

shows the detailed instrumentation created by our basic
scheme. access(g) represents the original program instruction that
accesses the global variable g. The thread-local variable curTid
contains the thread id of the currently executing thread, while the
variable gTid stores the ID of the last thread that accessed the global
g. At[line 2] we record the value of the expression gTid != curTid
at the site s; remote; is true and localy is false if and only if this
expression is true. At[line 3] the value of gTid is updated and then
the original program instruction is executed. Note that a per-global-
variable lock glock is used to avoid races within our instrumentation
code and ensure the atomicity of the whole instrumented code block.

3.2.2 Handling Pointers

The previous basic scheme assumes that we know which global
variables are shared and which instructions access these variables.
In practice, performing this analysis is expensive. Furthermore, a
single instruction might access multiple global variables via pointers.
This issue motivates us to use a completely dynamic approach to
disambiguating memory addresses.

38

lock(glock);

test_and_insert(&g, curTid, &differs);
record(s, differs);

access(g);

unlock(glock);

L Y S

Figure 4: Instrumentation for pointers

We use a hash table that stores mappings from memory location
addresses to the ID of the thread that last accessed each memory
location. shows instrumentation code that uses this hash
table. In practice, a single instruction might access multiple possibly-
shared locations, and thereby require multiple hash table inserts and
look-ups. We restrict our examples to single-access instructions
for clarity of presentation. The function test_and_insert online 2|
sets the local variable differs to true if the entry in the hash table
corresponding to &g does not equal curTid, and to false otherwise.
Thus, the value of differs is true if the last thread which accessed g
was different from the current thread executing. Also, the function
inserts the entry &g +— curTid into the hash table. Subsequently, the
value of differs is recorded as shown on[line 3 Also note that in
this scheme the variable glock is a global lock that is used to control
accesses to the entire hash table and ensure that the instrumented
code appears to execute atomically.

In our implementation, we use a fixed size hash table in which
the older entries are replaced with newer ones once the hash table
becomes full. We plan to investigate other strategies to maintain this
information.

3.3 CCI Sampling

As mentioned earlier, the sampling mechanism used in CBI is
critical to achieving low monitoring overhead that is demanded by
production run usage. Likewise, CCI randomly decides which code
regions to sample at run time. The sampling rate can be adjusted to
control the imposed overhead.

Unfortunately, CBI's sampling scheme cannot be directly applied
to CCIL. In CBI, each thread makes local, independent decisions
about when to start/stop the sampling. This is by design, and it
works well for CBI’s predicates, which concern themselves with
data and control activity within single threads. However, this is
unsuitable for CCI: it would allow a non-sampling thread to “sneak
in” and access shared data without notifying other sampling threads
that it had done so. Therefore in CCI, we have to activate sampling
at roughly the same time in all threads in order to collect accurate
interleaving information.

To address this challenge, CCI uses one shared global variable
gsample to control whether to run instrumentation in all threads.
Once gsample is set/unset in one thread, all threads begin/end
their sampling. shows how the basic instrumentation is
augmented with sampling. If sampling is turned off, then lines[T2}-
are executed. CCI uses the basic random sampling framework of
CBI to set gsample at[line T3|to turn on sampling. Once sampling
is turned on the instrumentation code at lines ZHI0]is enabled in all
threads.

When to stop sampling is not a critical decision, provided that
sampling lasts long enough time to collect useful interleaving infor-
mation. In our current instrumentation scheme, the thread that sets
gsample is the one that resets it. This is controlled by the thread-
local variable iset, which is set at[line T3]along with gsample. Each
thread has a private copy of iset, so the shared gsample flag is
cleared at the next instrumentation site in the same thread that set it
in the first place or at the return of the function that set it (which is

1 if (gsample == 1) {

2 lock(glock);

3 test_and insert(&g, curTid, &differs, &stale);
4 record(stale ==17?s1 : s2, differs);
5 access(9);

6 unlock(glock);

7 if (iset ==1) {

8 clear ();

9 gsample = iset = 0;

0}

11} else {

12 access(Q);

13 [[gsample =iset=1;]1?

14 }

Figure 5: Instrumentation with sampling. “[[...]]?” marks a
block of code that is randomly sampled using traditional CBI
sampling methods.

not shown in[Figure 3). Of course, there could be other schemes to
decide when to stop a sample period, such as variants of Hirzel and
Chilimbi’s bursty tracing [[I0]. We plan to explore these alternatives
in the future.

An interesting issue raised by the sampling mechanism is how
to update the predicates of the instruction which first accesses a
memory location during a sampling period. The entry in the hash
table corresponding to this memory location might not reflect the
last thread which accessed it. One approach could be to not record
predicates corresponding to such memory locations. The problem
with this approach is that accesses to certain memory locations might
be few and far between. Predicates involving successive accesses
to such memory locations might never be recorded. To handle such
cases, for each instruction we maintain a secondary instrumentation
site which uses the stale entry in the hash table. The rationale
is that wrong predicates will be pruned out with high probability
through CBI-style statistical analysis anyway. Therefore, keeping
these secondary predicates can exploit more run-time information
without increasing false positives.

At the end of every sampling period, we call the function clear()
as shown onl[line § which has the effect of marking all current entries
in the hash table as being stale. This is achieved by associating a
generation count with the hash table and with each entry in the hash
table. An entry in the hash table is deemed stale if its generation
count is less than the generation count of the hash table. When an
entry is inserted its generation count is set to the current generation
count of the hash table. The clear() function simply increments the
generation count of the hash table and, hence, marking all current
entries in the hash table as stale. Now, the function test_and_insert()
on sets stale to true if the entry corresponding to &g is
stale. Instrumentation site s1 uses the stale entry and records the
predicate, while site s2 always uses information gathered in the
current sampling period. In this way, CCI uses information from
both the current and previous sampling periods.

4. EXPERIMENTAL EVALUATION
4.1 Methodology

We have implemented CCI as an extension to the CBI framework
and evaluated it using several widely used applications with real
concurrency bugs. [Table T|shows some characteristics of the bench-
marks and the experimental runs. The experiments were carried
out to answer two key questions: (1) how accurate is CCI in report-

39

Table 1: Benchmark characteristics and overheads

Runs Overhead
Benchmark Sites Total Failed No Sampling Sampling
Apache 8,540 1,000 112 25% 2%
PBZIP2 420 2,000 979 200% 7%
FFT 223 1,000 322 650% 25%
LU 280 1,000 485 1,300% 800%

Table 2: Bug predictors for Apache HTTP Server

Thermometer Predicate Function

R: buf->outent +=len; ap_buffered_log_writer()

ing root causes of concurrent program failure, and (2) what is the
performance overhead of CCI monitoring? To assess the effective-
ness of CCI sampling, we also compare the performance of CCI
with and without sampling. All experiments were run on dual-core
Intel P4 machines using a sampling deployment as recommended
by earlier work [15]]. We use the iterative ranking and elimination
model of Liblit et al. [[16] to mine collected data for failure predic-
tors. Failure predictors discovered by the statistical model must be
correlated with a positive increase in failure likelihood with at least
95% confidence, also as in prior work.

[Table Tlalso summarizes the runtime overhead of CCI without and
with sampling as compared to the uninstrumented code. Tables[ZH3]|
visualize analysis results using bug thermometers, one per predictor
selected by the statistical model [[16]]. The width of a thermometer
is logarithmic in the number of runs in which the predicate was
observed. The black band on the left denotes the context of the
predicate: the probability of failure given that the predicate was
observed at all, regardless of whether it was true or false. The dark
gray or red band denotes the 95%-certain increase in the probabil-
ity of failure given that the predicate was true. The light gray or
pink band shows the additional increase that is estimated but not at
least 95% confident. A large dark gray/red area indicates that the
predicate being true is highly predictive of failure, and a small light
gray/pink band indicates that this prediction carries high confidence.
Any white space at the right edge of the band indicates the number
of successful runs in which the predicate was observed to be true: a
measure of the bug predictor’s non-determinism.

In addition to the thread-interleaving instrumentation scheme pro-
posed here, two conventional CBI instrumentation schemes were
activated: one that records the directions of conditional branches,
and one that monitors the relative values of same-typed pairs of
scalar variables. Neither conventional scheme was able to diagnose
failures in any of the benchmarks used: all conventional CBI pred-
icates were eliminated due to low (< 95%) confidence that they
behave differently in failing versus successful runs. This affirms our
earlier claim that conventional CBI instrumentation and sampling
strategies are ill-suited to diagnose concurrency bugs.

4.2 Apache HTTP Server

In this experiment we use CCI to diagnose a non-deterministic
log corruption problem in Apache. This bug (illustrated in [Figure TJ)
was originally reported by Apache users on Apache-Bugzilla [26].
Our experiments are set up based on the bug report. The whole
experiment consists of 1,000 runs. Each run starts the Apache
HTTP Server, downloads two files in parallel ten times, then stops
the server. Each run is labeled as a failure if its log file is corrupted
and a success otherwise.

Table 3: Bug predictors for PBZIP2

Table 4: Bug predictors for FFT

Thermometer Predicate Function Thermometer Predicate Function
— R: pthread_mutex_unlock(fifo->mut); consumer_decompress() — R: Global->finishtime=finish; SlaveStart()
— R: Global->initdonetime=initdone; SlaveStart()
— R: printf("...",Global->transtimes[0],...); main()
. — L: malloc(2*(rootN-1)*sizeof(double)); SlaveStart
shows all bug predictors reported by CCI, where the R e) ¢) 0
indicates that the remote predicate was true at the instruction, viz.,
the previous access to one of the memory locations accessed was Table S: Bug predictors for LU
by a different thread. CCI perfectly identifies the root cause of
this failure: the one listed predictor is exactly the line of code that Thermometer ~ Predicate Function
causes failure if a different thread inte.rvenes.. By contrast, E.lnd as — R: Global->rf=myrf; OneSolve()
mentioned above, none of the conventional single-thread-oriented — L: (Global->start).gsense=-Isense; OneSolve()

CBI instrumentation schemes offers a strong predictor for this bug.

Sampling is highly effective in keeping instrumentation overheads
low. Without sampling, we observe a 25% slowdown. With /100
sampling, we find a mere 2% performance overhead, certainly suit-
able for use with production runs, and yet still sufficient to reveal
the critical failure predictor.

4.3 PBZIP2

We also use CCI to diagnose a non-deterministic crash problem
in PBZIP2 v0.9.5. This bug was originally mentioned in the change
log of PBZIP2 v1.0.2. Based on the change log, PBZIP2 randomly
crashes during file decompression. Our experiments are set up
following the description in the change log. In addition, in order
to encourage the buggy behavior to manifest more frequently, we
uniformly added many thread yield calls in the source code, which
were randomly executed. Finally, since CCI’s underlying source
code instrumentation framework only works on C files, we ported
PBZIP2 from C++. This simply required implementing the vector
data structure in C, as PBZIP2 uses no other special C++ features.

Figure 2| shows a simplified version of this bug. The problem
arises because the parent thread does not call pthread_join on the
worker thread in the case of decompression. The parent then de-
stroys the fifo->mut mutex. Subsequently, when the worker tries to
use this mutex, the program crashes. Our experiment consists of
2,000 runs in which PBZIP2 is used to compress and decompress a
file. If PBZIP2 crashes, then that run is labeled as a failure.

shows all predictors reported by CCI. The predictor
corresponds to the use of the mutex fifo->mut in the decompression
function: precisely the location of the failure-causing race. Without
sampling, CCI instrumentation causes a 3x slowdown, but /100
sampling reveals the bug with only a 7% performance penalty.

44 SPLASH-2

In this experiment, we applied CCI to two kernel programs, LU
and FFT, from the SPLASH-2 benchmark suite [28]]. This problem
is similar to the PBZIP2 bug, i.e., the bug is caused by the bad,
actually missing, implementation of the WAIT_FOR_END macro in
the ¢.m4.ia32 file used. The missing macro allows a race between
the assignments at the end of the worker thread to global variables
that maintain the timing information and the printing of these global
variables at the end of the parent thread. As a result, the displayed
timing information is incorrect.

The experiment consists of running the given program 1,000 times
and marking a particular run as a failure if the finish and initialization
times printed were zero. Here again, we added randomly-executed
thread yield calls in the source code in order to make the program
fail more frequently.

[Table 4]lists all the predictors reported by CCI for FFT. The top
two predictors correspond to the assignments at the end of the worker
thread which store the timing information. The third predicate states

40

that the thread which last accessed Global->transtimes[0] was not
the main thread. Since, in the code, only the thread which finally
sets the timing statistics accesses Global->transtimes[0], we see
that the third predictor relates to a necessary condition for the bug
to manifest, viz., the thread which sets the timing information is not
the same as the main thread. The final predicate is a false positive.
Note that the L indicates that the local predicate was true at the
instruction. Without sampling, we see that CCI causes a 6.5x
slowdown, while sampling reduces the overhead to only 25%.

shows the predictors reported for LU. The top predictor
corresponds to the assignment at the end of the worker thread which
stores the timing information. For LU, without sampling, CCI
instrumentation causes a 13x slowdown, and even with sampling
incurs a 8 x performance penalty. We are currently investigating the
reason for this large overhead in this particular case.

S. RELATED WORK

Pre-deployment tools for detecting races and atomicity violations
fall into two categories: static and dynamic. Static approaches [} 9}
12]] are conservative and must consider all potential races. A problem
with using static analysis is that it is difficult to distinguish benign
races from those that can genuinely cause failures. Benign races
occur, for example, in test-and-set-lock operations and performance
counter updates. Scalability of analyses to target large programs is
also problematic.

Many dynamic analysis tools [6, /17, |23]] have been proposed to
detect data races and atomicity violation bugs. These tools have
high run-time overheads (around 25x on average) which makes
them impractical for post-deployment use. Furthermore, each of
these tools target only a specific class of concurrency bugs viz. either
atomicity violations [|6, [17] or data races [23|], and assume a par-
ticular synchronization mechanism, e.g., the lockset analysis used
in Eraser 23] applies only to lock-based multi-threaded programs.
CCI targets the root causes of a wide variety of software failures
caused by not just data races but also atomicity violation bugs and
other types of concurrency bugs and is agnostic to which particular
synchronization mechanism is used. By leveraging information
about which runs failed and which were successful, CCI avoids the
false-positive problems caused by benign races which plague other
dynamic approaches.

These issues also apply to a recent approach by Marino et al. [[18]
which used happens-before relations in order to detect data races.
The difference between this and previous approaches was the use
of sampling to reduce overheads. Since the approach of Marino
et al. is to record all synchronization operations for race detection,
sampling can only be performed on non-synchronization memory
operations. This results in run-time overheads of as much as 2.5x

for synchronization intensive applications. The sampling in CCI, on
the other hand, is not constrained in this manner and can achieve
much lower run-time overheads (around 10%).

There have been several other approaches to help concurrent soft-
ware development. There has been a lot of research on testing of
concurrent programs, such as testing based on random execution
interleavings [[25], exhaustive context-bounded testing [19]], and
race-directed random testing [24]. Record-and-replay systems for
multi-core machines could also aid in debugging concurrent pro-
grams. Unfortunately, existing proposals are not practical for pro-
duction usage due to high overhead (around 10x slowdown [4}|13]))
or reliance on non-existing hardware [11]]. Recent approaches [21}
22| aim to not detect, but tolerate certain kinds of races at run-time.
This is orthogonal to our goal of diagnosing the root causes of
concurrent software failures.

CCl is based on the Cooperative Bug Isolation (CBI) project |14,
16]], which uses a sampling-based monitoring framework to en-
sure that run-time overheads are low, and uses statistical tech-
niques on the collected data to infer likely root causes from this
sparsely-sampled data. Subsequent work has further refined the CBI
paradigm to find root causes of (sequential) bugs [2,3]l.

6. CONCLUSION

We have described CCI, a low-overhead, scalable strategy for
root-cause analysis of concurrency bugs. We have implemented
the system and shown our technique to be effective on two widely-
deployed applications. Our approach intentionally tracks far less
information than exhaustive dynamic race detectors. Combined
with a novel approach to cross-thread sampling, this allows CCI to
achieve very low overheads, making it practical for use in produc-
tion environments. At the same time, the data collected is sufficient
to isolate root causes of failures that are invisible to prior statistical
debugging work. In the future we plan to extend this work by explor-
ing other instrumentation schemes that track different concurrency
events, and by experimenting with other thread-aware sampling
mechanisms.

7.
(1]

REFERENCES

The Apache Software Foundation. Apache HTTP Server
Project. http://httpd.apache.org/l

P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical
debugging using compound Boolean predicates. In S. Elbaum,
editor, International Symposium on Software Testing and
Analysis (ISSTA), London, United Kingdom, July 9-12 2007.
T. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.
HoLMES: Effective statistical debugging via efficient path
profiling. In Proceedings of the International Conference on
Software Engineering (ICSE), May 2009.

G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen.
Execution replay of multiprocessor virtual machines. In VEE,
2008.

D. Engler and K. Ashcraft. RacerX: Effective, static detection
of race conditions and deadlocks. SIGOPS Oper. Syst. Rev.,
37(5):237-252, 2003.

C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL, 2004.

J. Gilchrist. PBZIP2: Parallel BZIP2 Data Compression
Software. http://compression.ca/pbzip2/.

P. Godefroid and N. Nagappan. Concurrency at Microsoft — an
exploratory survey. TechReport, MSR-TR-2008-75.

(2]

(3]

(4]

(5]

(6]
(7]

(8]

41

[9] T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking
by context inference. In PLDI, 2004.

M. Hirzel and T. M. Chilimbi. Bursty tracing: A framework
for low-overhead temporal profiling. In 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization, pages
117-126, 2001.

D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and

J. Torrellas. Two hardware-based approaches for deterministic
multiprocessor replay. CACM, 2009.

V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast
and accurate static data-race detection for concurrent
programs. In CAV, pages 226239, 2007.

[13] T.J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel
programs with instant replay. IEEE Trans. Comput., 36(4),
1987.

B. Liblit, A. Aiken, A. X. Zheng, and M. L. Jordan. Bug
isolation via remote program sampling. In PLDI, 2003.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. 1. Jordan.
Public deployment of Cooperative Bug Isolation. In A. Orso
and A. Porter, editors, Proceedings of the Second
International Workshop on Remote Analysis and Measurement
of Software Systems (RAMSS ’04), pages 57-62, Edinburgh,
Scotland, May 24 2004.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In PLDI, 2005.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
atomicity violations via access-interleaving invariants. [EEE
Micro, 27(1):26-35, 2007.

D. Marino, M. Musuvathi, and S. Narayanasamy. Effective
sampling for lightweight data-race detection. In PLDI, 2009.
M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. PLDI.,
42(6):446-455, 2007.

[20] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. In ASPLOS, 2009.

S. Rajamani, G. Ramalingam, V. P. Ranganath, and

K. Vaswani. Isolator: dynamically ensuring isolation in
comcurrent programs. In ASPLOS, 2009.

P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn,

R. Nagpal, and K. Pattabiraman. Detecting and tolerating
asymmetric races. In PPoPP, 2009.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and

T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15, 1997.

K. Sen. Race directed random testing of concurrent programs.
In PLDI, 2008.

S. D. Stoller. Testing concurrent Java programs using
randomized scheduling. In Proc. Second Workshop on
Runtime Verification (RV), volume 70(4) of Electronic Notes
in Theoretical Computer Science. Elsevier, July 2002.

A. Sussman and J. Trawick. Corrupt log lines at high volumes.
https://issues.apache.org/bugzilla/show_
bug.cgi?1d=25520.

M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In POPL,
2006.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In ISCA, 1995.

[10]

(11]

[12]

[14]

[15]

(16]

[17]

(18]

[19]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

http://httpd.apache.org/
http://compression.ca/pbzip2/
https://issues.apache.org/bugzilla/show_bug.cgi?id=25520
https://issues.apache.org/bugzilla/show_bug.cgi?id=25520

	Introduction
	Background
	CCI Design
	Predicate Design
	Predicate Collection
	Basic Scheme
	Handling Pointers

	CCI Sampling

	Experimental Evaluation
	Methodology
	Apache HTTP Server
	PBZIP2
	SPLASH-2

	Related Work
	Conclusion
	References

