
Comprehensive Path-sensitive Data-flow Analysis

Aditya Thakur
aditya@hpc.serc.iisc.ernet.in

R. Govindarajan
govind@serc.iisc.ernet.in

Supercomputer Education and Research Centre
Indian Institute of Science
Bangalore - 560012, India

ABSTRACT
Data-flow analysis is an integral part of any aggressive op-
timizing compiler. We propose a framework for improving
the precision of data-flow analysis in the presence of com-
plex control-flow. We initially perform data-flow analysis to
determine those control-flow merges which cause the loss in
data-flow analysis precision. The control-flow graph of the
program is then restructured such that performing data-flow
analysis on the resulting restructured graph gives more pre-
cise results. The proposed framework is both simple, involv-
ing the familiar notion of product automata, and also gen-
eral, since it is applicable to any forward data-flow analysis.
Apart from proving that our restructuring process is cor-
rect, we also show that restructuring is effective in that it
necessarily leads to more optimization opportunities. Fur-
thermore, the framework handles the trade-off between the
increase in data-flow precision and the code size increase in-
herent in the restructuring. We show that determining an
optimal restructuring is NP-hard, and propose and evaluate
a greedy strategy. The framework has been implemented
in the Scale research compiler, and instantiated for the spe-
cific problem of Constant Propagation. On the SPECINT
2000 benchmark suite we observe an average speedup of 4%
in the running times over Wegman-Zadeck conditional con-
stant propagation algorithm and 2% over a purely path pro-
file guided approach.

Categories and Subject Descriptors
D.3.4 [PROGRAMMING LANGUAGES]: Processors–
Code generation; Compilers; Optimization

General Terms
Algorithms, Languages, Performance, Theory

Keywords
Code Duplication, Data-flow analysis, Destructive Merge,
Path-sensitive, Precision, Restructuring, Split Graph

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CGO’08, April 5–10, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

1. INTRODUCTION
It is becoming increasingly difficult to get performance im-

provement using compiler optimizations, as epitomized by
Proebsting’s Law [16]. But developers still want that extra
5-15% improvement in the running times of their applica-
tions, and the compiler optimizations are a safer alternative
to manual optimizations carried out by developers which
might introduce errors [17].

Information gathered using data-flow analysis is used by
an aggressive optimizing compiler to perform code optimiza-
tions such as constant propagation, dead-code elimination,
common sub-expression elimination. Imprecision in data-
flow analysis leads to a reduction in optimization opportu-
nities. The loss of data-flow precision occurs due to the
approximation or merging of differing data-flow facts along
incoming edges of a control-flow merge. In this paper, we
present a new framework to overcome this imprecision. We
initially perform data-flow analysis to determine those control-
flow merges that cause the loss in data-flow analysis preci-
sion, which we call Destructive Merges. The control-flow
graph (CFG) of the program is then restructured so that
destructive merges are eliminated. Thus, performing data-
flow analysis on the resulting restructured graph gives more
precise results. This leads to more optimization opportuni-
ties in the restructured CFG.

The framework presented in this paper is simple and clean,
and uses the familiar notion of product automata [11] to
carry out the restructuring transformation. Further, the
framework is general since it can be instantiated to any for-
ward data-flow analysis. This clean formulation allows us
to show that the restructuring is correct, in the sense that
the original and restructured CFGs are equivalent. Also, we
prove that the restructuring is effective in that it necessar-
ily leads to more optimization opportunities in the restruc-
tured CFG. The restructuring inherently entails an increase
in code size due to code duplication i.e., the increase in pre-
cision comes at the cost of an increase in code size. Further-
more, we show that determining an optimal restructuring
is NP-Hard and, hence, propose a greedy heuristic for re-
structuring. Our framework explicitly handles the trade-off
between precision and code size increase and also makes use
of low-cost basic-block profile information.

We have implemented the proposed framework in the Scale
research compiler [19] and instantiate it with the specific
problem of Constant Propagation. We compare our tech-
nique with the Wegman-Zadeck conditional constant prop-
agation algorithm [23](Base) and with the Hot Path Graph
approach (HPG) [1] which is a purely path profile-guided

55

Figure 1: In program P , node D is a destructive
merge. Use of variable x cannot be replaced by a
constant at node G.

restructuring technique. On the SPECINT 2000 benchmark
suite [20], our technique exposes, on an average, 3.5 times
more dynamic constants as compared to the HPG technique.
Further, we observe an average speedup of 4% in the run-
ning times over Base and 2% over the HPG technique.

The rest of the paper is structured as follows. We first
illustrate our technique using a simple example. We then go
on to present the general framework. In Section 3, we de-
scribe the method to determine which nodes of the CFG are
to be duplicated for restructuring. Section 4 discusses the
actual restructuring algorithm. In this section, we demon-
strate the correctness and efficacy of our approach. We then
discuss the trade-off between the increase in precision and
increase in code-size in Section 5. Section 6 discusses the
related work and compares our technique to the HPG tech-
nique [1]. This is followed by the experimental results in
Section 7, after which we conclude.

2. OVERVIEW
We illustrate our technique using the problem of Constant

Propagation. Consider the program P in Figure 1. There
are two definitions of variable x at nodes B and C, while
node G contains a use of variable x. The remaining nodes do
not define or use variables x or y. We see that node G cannot
be optimized since the use of variable x cannot be replaced
by a constant. Our technique would restructure the program
P by duplicating node D, E, F and G to obtain the Split
Graph P ′, shown in Figure 2. After this restructuring, the
uses of variable x at nodes G1 and G2 can now be replaced
with constants 1 and 2 respectively.

In order to understand how to obtain the program P ′,
we first look at control-flow merge D in program P . At
node D, the incoming data-flow facts {x = 1} and {x = 2}
are merged to get the data-flow fact {x = nc}, where nc

Figure 2: In Split Graph P ′, uses of variable x at
G1 and G2 can now be replaced by constants 1 and
2 respectively.

stands for not-constant. We call such a control-flow merge
where data-flow approximation leads to loss of precision a
Destructive Merge. Due to this loss of precision at node D,
only the data-flow fact {x = nc} reaches node G, and hence,
node G cannot be optimized. Further, we also notice that if
(somehow) the data-flow fact {x = 1} were to hold at node
D, then the use of variable x at node G can be replaced by
the constant 1. Thus, we see that in order to optimize node
G, it is useful for data-flow fact {x = 1} to hold at node
D. This also holds for the data-flow fact {x = 2}. On the
other hand, it is not useful for the data-flow fact {x = nc}
to hold at node D. Hence, in program P ′ in Figure 2 node
D is duplicated and at the copies D1 and D2 of D, the data-
flow facts {x = 1} and {x = 2} hold respectively. It can be
seen that nodes E, F and G also need to be duplicated to
preserve the data-flow facts {x = 1} or {x = 2} at nodes G1
and G2 respectively. Further, nodes H, I and J cannot be
optimized even if the data-flow facts {x = 1} or {x = 2} hold
at node D. Thus, these nodes are not duplicated in Program
P ′ in Figure 2. We say that these nodes are not influenced
by the destructive merge at node D. The nodes D, E, F ,
and G are called the Region of Influence for the destructive
merge D and are exactly those nodes which have multiple
copies in program P ′.

In program P , there are four paths which reach node G.
Along the two paths going through edge (B, D), data-flow
fact {x = 1} holds. Similarly, along the two paths going
through edge (C, D), data-flow fact {x = 2} holds. Hence,
program P is restructured in such way these two sets of
paths are separated and the differing data-flow facts along
them do not merge in program P ′. We use the concept of
product automaton [11] to carry out this restructuring. The
increase in the number of uses which can be replaced by
constants comes at the cost of increase in code size.

56

Figure 3: For the problem of Constant Propagation,
(a)-(b) show two destructive merges and (c)-(d) il-
lustrate two control-flow merges which are not de-
structive. c1 and c2 are two differing constants, while
⊥ represents not-constant.

Though not illustrated in this pedantic example, our re-
structuring technique is also applicable when there are mul-
tiple destructive merges which we wish to eliminate and
control-flow structures such as loops.

3. COMPUTING THE REGION OF
INFLUENCE

Central to our approach, is the notion of a destructive
merge. Intuitively, a destructive merge is a control-flow
merge where data-flow analysis loses precision. The notion
of precision is governed by the partial-order of the lattice of
the data-flow problem.

Let pred(n) denotes the set of control-flow predecessors
of a node n in the CFG, in dff(n) and out dff(n) denotes
the data-flow facts holding true at the beginning and end of
a node n in the fixed-point solution respectively, and ≺ is
the partial order of the lattice in the data-flow problem.

Definition 1. (Destructive Merge) For a given for-
ward data-flow problem and its corresponding solution, a
control-flow merge m is said to be a Destructive Merge if
∃p ∈ pred(m) s.t. in dff(m) ≺ out dff(p).

Definition 2. (Destroyed Data-flow Facts) Given
a destructive merge m, a data-flow fact d is said to be a De-
stroyed Data-flow Fact , i.e. d ∈ destroyed dff(m), iff d ∈
out dff(p), where node p ∈ pred(m), and in dff(m) ≺ d.

Example: For the problem of Constant Propagation, Fig-
ure 3 illustrates the different scenarios possible at a control-
flow merge. Nodes D1 and D2 are destructive, while nodes
N1 and N2 are not.

More specifically, in Figure 1 node D is a destructive
merge since in dff(D) = {⊥}, while out dff(B) = {x = 1}.
Further,

destroyed dff(m) = {x = 1, x = 2}.

2

Our restructuring targets such destructive merges. In the
rest of this section, we determine which nodes are influenced
by the loss of precision lost at a destructive merge and which

nodes need to be duplicated in order to eliminate the effects
of a destructive merge.

3.1 Single Destructive Merge
The following definitions assume that we are given a CFG

and a data-flow problem and a corresponding solution.

Definition 3. (Useful Data-flow Facts) For a given
node n, a data-flow fact is said to be a Useful Data-flow Fact,
i.e. d ∈ useful dff(n), iff data-flow fact d holding true at
node n implies that the node n can be optimized.

The above definition implicitly captures the interaction
between a data-flow analysis and the client optimization. It
allows us to abstract out the details of this relation by pro-
viding an oracle which knows which data-flow facts enable
the optimization for a particular program statement. We
can now generalise this notion of useful data-flow facts.

Definition 4. (Useful Data-flow Facts) Given nodes
m and n, a data-flow fact is said to be Useful Data-flow Fact
for node n at node m, i.e. d ∈ useful dff(m, n), iff data-
flow fact d holding true at node m implies that the node n
can be optimized.

It is easy to see that Definition 3 is a special case of Defi-
nition 4 with node m being the same node n.

Example: Consider the program in Figure 1,

useful dff(G) = {. . . , x = −1, x = 0, x = 1, x = 2, . . .},

useful dff(D, G) = {. . . , x = −1, x = 0, x = 1, x = 2, . . .}.

This is due to the fact that if the value of variable x were
to be a constant at node D, then it would remain a constant
at node G. This would enable us to optimize node G by
replacing the use of variable x with a constant. 2

Definition 5. (Influenced Nodes) Given a destruc-
tive merge m, we say a node n is influenced by the destruc-
tive merge m, i.e. n ∈ influenced nodes(m), iff

destroyed dff(m) ∩ useful dff(m, n) 6= ∅.

In other words, a node n is influenced by a destructive
merge m when, if one of the data-flow facts d destroyed by
node m were to hold true at node m, then node n could be
optimized. Intuitively, a node is influenced by a destruc-
tive merge if eliminating the destructive merge can enable
the optimization of the node. Further, these are the only
nodes which can be optimized if the destructive merge is
eliminated.

Definition 6. (Revival Data-flow Facts) Given a
destructive merge m, a data-flow fact is said to be a Revival
Data-flow Fact, i.e. d ∈ revival dff(m), iff there exists a
node n ∈ influenced nodes(m) such that

d ∈ destroyed dff(m) ∩ useful dff(m, n).

The Revival data-flow facts denote those data-flow facts
which if they would hold true at the destructive merge m
would enable the optimization of some influenced node.

57

Example: Consider Figure 1,

influenced nodes(m) = {G},

destroyed dff(m) = {x = 1, x = 2},

useful dff(D, G) = {. . . , x = −1, x = 0, x = 1, x = 2, . . .},

revival dff(m) = {x = 1, x = 2}.

2

Since the influenced nodes are the only nodes which can
be optimized by eliminating the destructive merge, we would
like to determine the largest such set of nodes. Unfortu-
nately, for the specific problem of Constant Propagation de-
termining whether a node n belongs to influenced nodes(m)
for a destructive merge m is undecidable in general.

Theorem 1. For the problem of Constant Propagation,
given a node n and destructive merge m determining if n ∈
influenced nodes(m) is undecidable.

Proof. (Sketch) The proof follows from the undecidabil-
ity of constant propagation for programs with loops even
if all branches are considered to be non-deterministic [14,
9, 18]. The reduction is based on the Post correspondence
problem [11]. We show that the node n ∈ influenced nodes(m)
iff the Post correspondence problem is not solvable.

As we see in the Section 4, our restructuring is guaran-
teed to improve data-flow precision and optimize the nodes
which are influenced by the destructive merge. The above
theorem implies that we cannot determine all nodes which
are influenced by a destructive merge. If we include a node
which is not actually influenced by the destructive merge
in influenced nodes(m), then the restructuring will not
enable any optimizations for that node. Thus, the corre-
sponding increase in code size will be unnecessary. Hence, in
practice, we under-approximate the set of influenced nodes.
In particular, for Constant Propagation, if the data-flow
fact for variable x is destroyed at merge node m, then the
uses which are reachable only along paths from node m
which do not contain any definitions of variable x are in-
fluenced by the destructive merge m. This set is an under-
approximation and there might be nodes which are influ-
enced by the destructive merge m and not be included in
the set influenced nodes(m) which is actually determined.
Note, this under-approximation is orthogonal to our overall
approach.

Having determined which nodes are influenced, we now
find those nodes which need to be duplicated in order to
eliminate the effects of a destructive merge. Let reachable
nodes(l) denotes the set of nodes reachable from node l in
the CFG.

Definition 7. (Region of Influence) Given a destruc-
tive merge m, a node n is said be in the Region of Influ-
ence, i.e. n ∈ RoI(m), iff n ∈ reachable nodes(m) and
there exists a node u ∈ influenced nodes(m) and u ∈
reachable nodes(n).

Figure 4 shows a schematic diagram showing RoI(m) for
the destructive merge m. Node n belongs to the RoI(m)
since node n is reachable from node m and node u4 ∈
influenced nodes(m) is reachable from node n.

Figure 4: Schematic diagram showing the Region of
Influence for a destructive merge m.

Having determined the set of influenced nodes, the Region
of Influence consists of those nodes which are sufficient and
necessary to be duplicated in order to improve precision and
optimize the influenced nodes.

Example: In Figure 1, node D is a destructive merge.

influenced nodes(D) = {G},

reachable nodes(D) = {D, E, F, G, H, I, J},

G ∈ reachable nodes(D), G ∈ reachable nodes(E),

G ∈ reachable nodes(F), G ∈ reachable nodes(G),

RoI(m) = {D, E, F, G}.
2

3.2 Multiple Destructive Merges
In the previous section, we dealt with the situation where

we were given a single destructive merge to eliminate. In
practice, we will have a set of destructive merges M =
{m1, m2, . . . , mk} which are to be eliminated. In this sec-
tion, we extend the concepts of the previous section to han-
dle multiple destructive merges.

Definition 8. (Influenced Nodes) Given a set of de-
structive merges M = {m1, m2, . . . , mk}, the set of Influ-
enced Nodes is defined as

influenced nodes(M) =
[

m∈M

influenced nodes(m)

Definition 9. (Region of Influence) Given a set of
destructive merges M = {m1, m2, . . . , mk}, the Region of
Influence corresponding to M is defined as

RoI(M) =
[

m∈M

RoI(m)

Extending the definitions to handle multiple destructive
merges is straight forward. A node n belongs to
influenced nodes(M) iff it is influenced by at least one
destructive merge m ∈ M. Similarly, a node n belongs to
RoI(M) iff it belongs to the Region of Influence of at least
one destructive merge m ∈M.

58

Figure 5: (a) Schematic diagram of the Region of In-
fluence for a destructive merge m showing the Re-
vival and Kill edges. (b) The corresponding Split
Automaton Am.

4. THE CFG RESTRUCTURING
In this section, we discuss the actual restructuring algo-

rithm. There are two main constraints which such a restruc-
turing transformation should satisfy.

• Equivalence. The original and transformed programs
should be equivalent.

• Efficacy. The transformation should guarantee that
the improvement in data-flow precision leads to opti-
mization opportunities.

We explain a clean and simple technique which makes
use of familiar notions of product automaton [11], and show
that indeed our restructuring satisfies both the constraints.
As before, we first restrict ourselves to a single destruc-
tive merge, and then generalise this to multiple destructive
merges.

4.1 Single Destructive Merge
Corresponding to each destructive merge, we construct a

Split Automaton which will then be used to restructure the
CFG and eliminate the effects of the destructive merge.

Definition 10. (Kill Edges) Given a Region of Influ-
ence for a destructive merge m, an edge e = (u, v) is a
Kill Edge, i.e. e ∈ kill edges(m), iff u ∈ RoI(m) and
v /∈ RoI(m).

In other words, Kill Edges are those edges whose source
node is in the Region of Influence and target node is not in
the Region of Influence for a destructive merge m.

Definition 11. (Revival Edges) Given a Region of In-
fluence for a destructive merge m, an edge e = (u, m) is said
to be a Revival Edge, i.e. e ∈ revival edges(m), iff

out dff(u) ∈ revival dff(m).

In other words, Revival Edges are those incoming edges
of the destructive merge which correspond to Revival Data-
flow facts. Further, let d1, d2, . . . dk be the k distinct Revival
Data-flow facts for destructive merge m. We can partition
the incoming edges of destructive merge m into k+1 equiva-
lence classes R0, R1, . . . , Rk. An edge (u, m) ∈ Ri, 1 ≤ i ≤ k
if out dff(u) = di, and (u, m) ∈ R0 otherwise.

Figure 5(a) shows a schematic diagram illustrating the
above concepts.

Figure 6: The Split Automaton AD corresponding
to destructive merge D in Figure 1.

Example: In Figure 1,

out dff(B) = {x = 1}, out dff(C) = {x = 2},

revival dff(m) = {x = 1, x = 2},

revival edges(m) = {(B, D), (C, D)},

RoI(m) = {D, E, F, G},

kill edges(m) = {(G, H), (G, I)}.

2

Armed with the above concepts we are now ready to define
the Split Automaton.

Definition 12. (Split Automaton) The Split Automa-
ton Am corresponding to a destructive merge m is a finite-
state automaton defined as:

• the input alphabet Σ = E, the set of all edges in the
CFG.

• a set of k + 1 states Q = {s0, s1, s2, . . . , sk}.

• s0 ∈ Q is the initial and accepting state.

• the transition function δ : Q× Σ → Q defined as
(si, e) → sj , e ∈ Rj (Revival Transitions)
(si, e) → s0, e ∈ kill edges(m) (Kill Transitions)
(si, e) → si, otherwise (No Transition)

Intuitively, state si, 1 ≤ i ≤ k, corresponds to the Revival
Data-flow fact di and whenever an edge e ∈ Ri is seen, the
Split Automaton makes a transition to state si. We call this
the Revival Transitions. Further, whenever a Kill edge is
seen, the Split Automaton transitions to state s0. We call
these the Kill Transitions. In all other cases, the automaton
remains in the same state, and makes no transitions.

Example: Figure 5(b) shows a schematic diagram with
the Split Automaton corresponding to destructive merge m
in Figure 5(a).

Figure 6 shows the Split Automaton corresponding to de-
structive merge D in Figure 1. Intuitively, in the Split Au-
tomaton the transitions from states 0 and 2 to state 1 revive
the data-flow fact {x = 1} and stop it from being destroyed
due to a merge. The transition from state 1 to state 0 fi-
nally kills this data-flow fact. Similarly, the transitions from
states 0 and 1 to state 2 revive the data-flow fact {x = 2}.
The transition from state 2 to state 0 finally kills this data-
flow fact. The self-loops represent no transitions. 2

59

A CFG can be viewed as a finite-state automaton with
nodes of the CFG corresponding to the state of the automa-
ton, and the edges defining the alphabet as well as the tran-
sition function. The entry and exit node of the CFG cor-
respond to the start and accepting states in the automaton
respectively.

Definition 13. (Split Graph) Given a CFG P and and
a Split Automaton Am, we define the Split Graph S to be
S = P × Am, where × is the product automaton opera-
tor [11].

Each node n in the Region of Influence of node m in P will
have multiple copies ni in the Split Graph S corresponding
to the states in the Split Automaton.

Example: The Split Graph P ′ in Figure 2 is obtained by
performing the product of the CFG P in Figure 1 and the
Split Automaton AD in Figure 6. 2

Theorem 2. The Split Graph S is equivalent to the orig-
inal CFG P , where S = P ×Am.

Proof. (Sketch) Viewing CFG as finite-state automaton,
we say that the two CFGs G1 and G2 are equivalent if the
languages accepted by G1 is equal to language accepted G2,
i.e., L(G1) = L(G2). Such a notion of equivalence suffices
since the restructuring only duplicates nodes and does not
change the semantics of the individual nodes. Since S is
the product of P and Am, we can say that L(S) = L(P) ∩
L(Am) [11]. Further, we can show that L(P) ⊂ L(Am).
Intuitively, Am is a control-flow abstraction of P and accepts
more words. Thus, it follows that L(S) = L(P).

Thus, using simple concepts from automaton theory [11],
we are able to prove the correctness of our restructuring
transformation. Next, we prove the efficacy of the restruc-
turing.

Theorem 3. If node n ∈ influenced nodes(m) in CFG
P , then in the Split Graph S,node ni, i 6= 0 can be optimized,
where S = P ×Am.

Proof. (Sketch) Let di be a Revival Data-flow fact and
Ri be the corresponding equivalence class of edges. Since
n ∈ influenced nodes(m), by definition, if di (somehow)
holds true at node m, then node n can be optimized in CFG
P . The theorem proceeds in two steps. We first show that
data-flow fact di holds true at the start of node mi in the
Split Graph S. Then, we show that this data-flow fact does
not merge with other differing data-flow facts. This is due
to the nature of Revival Transitions.

4.2 Multiple Destructive Merges
We now consider eliminating multiple destructive merges.

Consider the set of destructive mergesM = {m1, m2, . . . , mk}
which are to be eliminated. Let A1, A2, . . . , Ak be the cor-
responding Split Automata.

Definition 14. (Split Graph) Given a CFG P and and
a set of Split Automata A1, A2, . . . , Ak, we define the Split
Graph S to be S = P ×A1 ×A2 × . . .×Ak, where × is the
product automaton operator [11].

The correctness and efficacy results also hold in this gen-
eral setting. It is interesting to note that we placed no re-
striction of the nature of the CFG. Thus, our restructuring
can handle programs with complex loop structures.

5. PRECISION-CODE SIZE TRADE-OFF
The discussion till now has not dealt with the trade-off

between the data-flow precision achieved and the increase
in the code size due to the restructuring inherent to this
approach. We have seen that the benefit of eliminating a
destructive merge m is related to the number of nodes influ-
enced by node m. Also, the size of the Region of Influence of
the destructive merge determines the resulting cost in terms
of increase code size. Thus, this trade-off depends directly
on the set of destructive merges we choose to eliminate to
form the Split Graph. In this section, we will prove that
the problem of picking the best set of destructive merges
which maximize the benefit in terms of data-flow precision,
for a given cost in terms of code size, is NP -Hard. We then
proceed to describe certain heuristics for the same.

Definition 15. The problem SPLIT is defined by the triple
(P,A, C) where:

• P is a program,

• A is a set of split automata corresponding to the vari-
ous destructive merges, and

• C is maximum increase in code size that is permitted.

A solution to SPLIT is a subset B of A such that applying
B to the program P does not increase the code-size by more
than C and which maximizes the number of influenced nodes
which can be optimized in the resulting program P ′.

Theorem 4. SPLIT is NP -Hard.

Proof. We shall reduce KNAPSACK [15] to it. We are
given a set I of n items, each item i having a specific weight
wi and a profit pi. The goal of KNAPSACK is to pick a
subset J ⊆ I of the items so as to maximize the total profit
subject to the condition that the total weight is less than a
specified weight W .

We will only give a brief outline of the proof due to lack
of space. Intuitively, in our reduction, picking an item i in
KNAPSACK will correspond to selecting an split automa-
ton in the solution of SPLIT. Thus, we construct a program
P , in which for each item i in KNAPSACK there exists
a destructive merge Di and a split automaton ai so that
|influenced nodes(Di)| = pi and |RoI(Di)| = wi. Further,
the profits and costs of items in KNAPSACK are indepen-
dent of each other i.e. the cost of picking an item i does
not depend on whether item j has been placed in the knap-
sack. To ensure this the constructed regions are such that
RoI(Di) ∩ RoI(Dj) = ∅, i 6= j. The constraint of the total
weight W of the knapsack is mapped to the increase in code
size C which we are allowed in SPLIT. It can be shown
that split automaton ai is in the optimal solution of SPLIT
if and only if item i is selected in the optimal solution of
KNAPSACK.

It is interesting to note that this hardness result does not
rely on the complexity of the underlying data-flow analysis
used, since we are already given the set of influenced nodes
and the Region of Influence for each destructive merge. Fur-
ther, the program P does not even contain any loops, and
is acyclic. Thus, restricting the problem SPLIT any further
does not result in a computationally tractable problem.

This lead us to device an aggressive greedy heuristic to
solve this problem. Our approach is based on estimating

60

Figure 7: Node E is a destructive merge.Use of vari-
able a at node B cannot be replaced with a constant.

Ball-Larus Acyclic Path Frequency
A → B → C → E 10
B → C → E 60
B → D → E 20
B → D → E → F 10

Table 1: A path profile for the example in Figure 7.
The frequency of the acyclic path denotes the num-
ber of times it was taken at run-time.

the benefit obtained and cost incurred by eliminating a de-
structive merge. In the absence of profile information, we
define the fitness of a destructive merge m to be

fitness(m) = |influenced nodes(m)|/|RoI(m)|.

Otherwise, we can make use of a low-cost basic-block profile
to estimate the potential run-time benefit of eliminating a
destructive merge. Let count(m) be the number of times
the destructive merge was executed in the profile run. We
now define the fitness to be

fitness(m) = count(m) ∗ |influenced nodes(m)|/|RoI(m).

In this way, frequently executed destructive merges are more
likely to be eliminated, and our approach can concentrate
on the hot regions of code. Finally, we choose the k fittest
destructive merges to be eliminated. It should be noted that
while this heuristic method does not guarantee that the code
size increase is within some bound (C), it ensures that the
code growth is not unbounded and eliminating two fittest
destructive merges per function works well in practice as
seen in Section 7.

6. RELATED WORK

6.1 Hot Path Graph Approach
An earlier proposal by Ammons and Larus [1] uses an

acyclic path profile to try and improve the precision of the
data-flow solution along hot paths. The approach consists
of first using a Ball-Larus path profile [2] to determine the
hot acyclic paths in the program. The next step in [1] con-
sists of constructing a new CFG, called the Hot Path Graph

Figure 8: The Hot Path Graph corresponding to pro-
gram P1. Node B1 is a destructive merge, and use
of variable a still cannot be replaced by a constant.

(HPG), in which each hot path is duplicated. The dupli-
cation eliminates control-flow merges along hot paths. The
assumption being that this will alone will improve precision
of data-flow analysis on the hot paths.

Consider the example code in Figure 7. Assume a path
profile as shown in Table 1. Figure 8 shows the resulting
HPG constructed assuming 100% coverage i.e. all taken
paths are considered. Notice that in the HPG there are
no control-flow merges along any of the acyclic paths listed
in Table 1. For example, the two overlapping acyclic paths
B → C → E and B → D → E in Figure 7 are separated into
two separate paths B1 → C2 → E2 and B1 → D3 → E3
in the HPG. After performing conventional data-flow analy-
sis on the HPG, the use of the variable a at node B0 can
be replaced by the constant 0. However, the restructur-
ing failed to optimize the two hot paths B → C → E and
B → D → E, and could not replace the use at node B1
with a constant value. The destructive merge E in the orig-
inal CFG is removed in the HPG by duplicating code and
creating two copies, E2 and E3. But the effect of the de-
structive merge has shifted to node B1, which is now a de-
structive merge since the data-flow facts a = 1 and a = 2
flowing along the incoming edges are merged at node B1.
Thus, we see that simply duplicating acyclic paths does not
always guarantee an increase in data-flow precision. Also,
concentrating only on acyclic paths implies that all loop-
back edges (E2, B1 and E3, B1 in the HPG) merge at a
common loop-header (node B1 in the HPG). Thus, loop-
headers which are destructive merges cannot be eliminated
by the Ammons-Larus approach and data-flow precision is
lost in these cases.

In comparison, the Split Graph constructed is shown in
Figure 9. The destructive merge at node E is completely
eliminated. In the Split Graph, uses of variable a at nodes
B0, B1 and B2 can be replaced by constants 0, 1 and 2
respectively. Thus, we see that our approach effectively
handles loop structures, guarantees additional optimization
opportunities, and does not rely on expensive path profile
information. Note that conventional control-flow graph re-
structuring approaches such as tail-duplication, superblock
formation can be seen to be similar to the HPG approach
since they use only profile information. We compare the
HPG method with our approach quantitatively in Section 7.

61

Figure 9: The Split Graph constructed from pro-
gram P1 in which the uses of variable a at nodes B0,
B1 and B2 can be replaced by constants 0, 1 and 2
respectively.

6.2 Other Related Approaches
In [5], an approach for complete removal of partial redun-

dancy is described. Data-flow analysis is used to identify
those regions of code which obstruct code motion. Code
duplication and code motion are then used to eliminate the
partial redundancy. Another approach targeted for PRE is
discussed in [21]. Unlike our approach, [21] will result in
unbounded code growth for finite height infinite lattices such
as those seen in Constant Propagation. Further, [21] does
not handle the precision versus code size trade-off and it is
not clear from [21] how this can be accomplished. Mar-
tel [12] present an algorithm which uses graph substitution
to unroll loops so as to improve the precision of invariants
detected via static analysis. Our control-graph restructur-
ing is more general and can handle more cases. For example,
the programs in Figure 1 and Figure 7 cannot be optimized
using such loop unrolling.

Code restructuring need not necessarily be limited to within
a procedure. An extension of Ammons-Larus approach to
the inter-procedural case is described in [13]. A more recent
framework [22] for whole-program optimization also consid-
ers code duplication to perform area specialization, which is
purely profile-driven.

There have also been several approaches which do not
restructure the CFG, which are complementary to our ap-
proach. Holley and Rosen presented a general approach to
improve data-flow precision by adding a finite set of pred-
icates [10]. In [4], the precision of def-use analysis is im-
proved by determining infeasible paths by using a low over-
head technique based on detection of static branch corre-
lations. Interestingly, path-sensitivity can also be obtained
by synthesizing the name space of the data-flow analysis [3].
Property simulation is introduced in ESP [6] and is used
to verify temporal safety properties. This approach keeps
track of the correlation between “property state” and cer-
tain execution states. In [7], data-flow analysis is performed
over a predicated lattice. The predicates used are determined
automatically using a counterexample refinement technique.
In [8], the context-sensitivity of the pointer analysis is ad-
justed based on the requirements of the client application.

Benchmark Split over Base Split over HPG
175.vpr 5 1

186.crafty -2 2
197.parser 2 3
256.bzip2 0 3
300.twolf 3 -2
181.mcf 12 4
164.gzip 3 2
average 4 2

Table 2: Percentage speedup in the running times
using Split in comparison to Base and HPG.

Benchmark Split / HPG
175.vpr 1.15

186.crafty 1.10
197.parser 1.27
256.bzip2 1.11
300.twolf 0.93
181.mcf 13.75
164.gzip 2.32
average 3.5

Table 3: Ratio of the number of dynamic instruc-
tions with constant uses in Split over HPG.

7. EXPERIMENTAL RESULTS
We have implemented our approach in the Scale research

compiler framework [19]. The framework is parameterized
with the definition of a destructive merge, which depends
on the data-flow analysis used, and on the definition of in-
fluenced nodes, which captures the interaction between the
specific optimization and analysis. We present experimen-
tal results for the specific problem of Constant Propagation.
We compare our approach (Split) with the Wegman-Zadeck
conditional constant propagation algorithm [23](Base) and
the Hot Path Graph approach(HPG) [1] using the SPECINT
2000 benchmark suite [20].

We instantiate the constant propagation phase of the O1
pass of the Scale compiler with the default approach (Base),
the HPG approach, and Split. For our approach we elimi-
nate the two fittest destructive merges per function using the
heuristic explained in Section 5. The HPG approach uses a
path profile generated using the train inputs for the respec-
tive programs, while the our Split approach uses a basic
block profile from the same train inputs. The benchmarks
are compiled for DEC ALPHA and were run on the 500MHz
21264 Alpha workstation. Running times were measures as
average over multiple runs using the larger ref inputs.

7.1 Benefits of Split Approach
Table 2 shows the speedup obtained by our Split approach

over the Base approach and over the HPG approach. Split
gives an average speedup of 4% over the Base case, and it
gives an average speedup of 2% over the HPG approach.

To understand where the speedup comes from, we calcu-
late the number of dynamic instructions which have constant
uses identified by the restructuring transformation. This is
computed by first performing constant propagation and re-
placing all constant uses in the original program. Restruc-
turing (HPG or Split) is then carried out. The constant
uses discovered can be attributed only to the restructuring.

62

Benchmark Split / Base Split / HPG
175.vpr 1.5 0.7

186.crafty 2.0 0.7
197.parser 1.8 1.1
256.bzip2 1.9 0.5
300.twolf 2.0 0.7
181.mcf 1.9 1.0
164.gzip 1.5 0.8
average 1.8 0.65

Table 4: Ratio of code size increase of Split over
Base, and of Split over HPG.

Thus, each instruction is weighted by the product of its ex-
ecution count (using the ref inputs)and the number of new
constant uses. The sum over all instructions gives us the
number of dynamic instructions which have constant uses
only because of restructuring. This metric has also been
used in [1]. Table 3 shows the ratio of these instructions for
Split over than of HPG. We observe an average of 3.5 times
more dynamic instructions with constants uses in Split as
compared to HPG. In the 181.mcf Split results in as many
as 13.75 times dynamic constant use instructions. This is
because Split can handle cyclic structures effectively.

7.2 Cost of Split Approach
As mentioned earlier, the increase in precision comes at

the cost of code duplication. We measured the code size
in terms of the number of Scale intermediate instructions.
Table 4 shows the ratio of the code size of Split over that of
Base. We observe an average of 1.8× (80%) increase due to
Split. The Table also shows the ratio of code size of Split
over that of HPG. We notice that Split incurs less code size
increase in comparison to HPG. Split shows an average of
0.65× (35%) decrease in code size as compared to HPG.

8. CONCLUSION
We proposed a general framework to improve data-flow

analysis precision based on restructuring the CFG of the pro-
gram. The framework can be instantiated to any data-flow
analysis. The actual transformation uses a known concepts
of product automaton. We have proved that the transfor-
mation guarantees increase in optimization opportunities.
Further, we showed that getting the optimal restructuring
is NP-hard and proposed and evaluated a greedy heuristic.
Our results indicate that our approach performs better than
existing path profile driven approach [1].

Acknowledgments
We would like to thank Prof. Uday Khedker and Kapil Vaswani
for many stimulating discussions.

9. REFERENCES
[1] G. Ammons and J. R. Larus. Improving data-flow

analysis with path profiles. In PLDI, pages 72–84,
1998.

[2] T. Ball and J. R. Larus. Efficient path profiling. In
Micro, pages 46–57, 1996.

[3] R. Bod́ık and S. Anik. Path-sensitive value-flow
analysis. In POPL, pages 237–251, 1998.

[4] R. Bod́ık, R. Gupta, and M. L. Soffa. Refining data
flow information using infeasible paths. In FSE, pages
361–377. Springer–Verlag, 1997.

[5] R. Bodik, R. Gupta, and M. L. Soffa. Complete
removal of redundant expressions. In PLDI, pages
1–14, 1998.

[6] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive
program verification in polynomial time. In PLDI,
pages 57–68, 2002.

[7] J. Fischer, R. Jhala, and R. Mujumdar. Joining data
flow with predicates. In FSE, pages 227–236, 2005.

[8] S. Guyer and C. Lin. Client-driven pointer analysis. In
SAS, 2003.

[9] M. S. Hecht. Flow Analysis of Computer Programs.
Elsevier Science Inc., New York, NY, USA, 1977.

[10] L. H. Holley and B. K. Rosen. Qualified data flow
problems. TSE, 7(1):60–78, 1981.

[11] D. C. Kozen. Automata and Computability.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997.

[12] M. Martel. Improving the static analysis of loops by
dynamic partitioning techniques. In SCAM, pages
13–21, 26-27 Sept. 2003.

[13] D. Melski and T. Reps. The interprocedural
express-lane transformation. In CC, 2003.

[14] M. Müller-Olm and O. Rüthing. On the complexity of
constant propagation. In ESOP ’01, pages 190–205,
London, UK, 2001. Springer-Verlag.

[15] C. H. Papadimitriou. Computational Complexity.
Addison Wesley, 1994.

[16] T. A. Proebsting. Proebsting’s Law: Compiler
Advances Double Computing Power Every 18 Years.
https://research.microsoft.com/∼toddpro/papers/
law.htm. 1998.

[17] W. W. Pugh. Is Code Optimization (Research)
Relevant?. http://www.cs.umd.edu/∼pugh/IsCode
OptimizationRelevant.pdf.

[18] J. H. Reif and H. R. Lewis. Symbolic evaluation and
the global value graph. In POPL ’77, pages 104–118,
New York, NY, USA, 1977. ACM Press.

[19] Scale. A scalable compiler for analytical experiments.
www-ali.cs.umass.edu/Scale/, 2006.

[20] SPEC. Standard Performance Evaluation
Corporation. http://www.spec.org.

[21] B. Steffen. Property-oriented expansion. In SAS, pages
22–41, 1996.

[22] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni,
and D. I. August. A framework for unrestricted
whole-program optimization. In PLDI, June 2006.

[23] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. In TOPLAS,
pages 181–210, 1981.

63

