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Abstract. Vision Transformers have emerged as state-of-the-art image recogni-
tion tools, but may still exhibit incorrect behavior. Incorrect image recognition
can have disastrous consequences in safety-critical real-world applications such
as self-driving automobiles. In this paper, we present Provable Repair of Vision
Transformers (PRoViT), a provable repair approach that guarantees the correct
classification of images in a repair set for a given Vision Transformer without
modifying its architecture. PRoViT avoids negatively affecting correctly classi-
fied images (drawdown) by minimizing the changes made to the Vision Trans-
former’s parameters and original output. We observe that for Vision Transform-
ers, unlike for other architectures such as ResNet or VGG, editing just the param-
eters in the last layer achieves correctness guarantees and very low drawdown.
We introduce a novel method for editing these last-layer parameters that enables
PRoViT to efficiently repair state-of-the-art Vision Transformers for thousands of
images, far exceeding the capabilities of prior provable repair approaches.

1 Introduction

Vision Transformers [5] have emerged as state-of-the-art image recognition tools, but
still exhibit faulty behavior that can result in disastrous real-world consequences. Image
recognition plays a significant role in safety-critical applications such as self-driving
automobiles [2] and medical diagnosis [14]. Faulty image recognition software has re-
sulted in serious ramifications, including loss of life [8,15]. As Vision Transformers
integrate more into real-world applications, it becomes increasingly important to pro-
vide guarantees about their correctness to ensure safety.

Recent research on provable repair of deep neural networks (DNNs) [25,26,7,6]
explores strategies to provide these guarantees, but such research has not focused on
Vision Transformers. In general, provable repair methods guarantee correctness of a
DNN’s output according to a user-defined repair specification. Provable repair methods
strive for the following properties:

– Efficacy: The repaired DNN must achieve 100% accuracy on the specified points.
– Efficiency: The repair process should be efficient and scale to large DNNs.
– Low drawdown: The repair should not negatively affect the previous good behav-

ior of a DNN.
– High generalization: The repair should generalize to similar points that are not

directly specified in the repair set.



Fig. 1: Runtime comparison of provable repair methods on the Vision Transformer ViT-
B/16. After 700 repair points, STDLP runs out of memory, while PRoViT continues
to successfully repair thousands of images. See Section 4.2 For more details on this
experiment.

These properties set provable repair apart from other DNN editing methods such as
retraining and fine tuning. Retraining is inefficient, especially on large models, and the
original training set may not be available. Fine tuning has demonstrated a tendency to
cause high drawdown [13], meaning the edited DNN has “forgotten” much of its origi-
nal knowledge. There is an abundance of research on editing pre-trained Transformers
to correct faulty behavior [16,17,18,12]. To the best of our knowledge, none of these
methods provide provable correctness guarantees.

In this paper, we present Provable Repair of Vision Transformers (PRoViT), a prov-
able repair method that provides correctness guarantees without modifying the original
model’s architecture. PRoViT is sound: a repaired network returned by PRoViT is guar-
anteed to classify all points in the repair set correctly. Similar to prior provable repair
approaches [7,25,26], PRoViT is not complete: given a network and a repair specifi-
cation, it may not find a repaired network. In practice, however, PRoViT successfully
repairs the classifications of thousands of images on state-of-the-art Vision Transform-
ers. It is efficient and highly scalable; as shown in Figure 1, PRoViT can repair 2000
images in 1423 seconds. PRoViT also avoids drawdown by minimizing the changes
made to the parameters of the Vision Transformer, achieving 0.12% drawdown when
repairing these 2000 images (Table 4).

The key observation underlying PRoViT is that, for Vision Transformers, editing
the parameters of the last fully-connected linear layer is sufficient to achieve provable
repair with low drawdown and high generalization. In particular:

1. We observed that fine tuning just the last layer of the Transformer resulted in effi-
cient repairs with low drawdown and very high generalization. We present the first
variant of PRoViT, PRoViTFT: an approach that fine tunes the last layer of the Vi-
sion Transformer until all images in the repair set are classified correctly. PRoViTFT



achieves much higher generalization than the baseline, which fine tuned all layers
of the Transformer (54.33% compared to 36.18% in Table 1).

2. We observed that editing the last layer of the Transformer using the standard linear
programming (LP) encoding from prior work [26,7] also resulted in repairs with
low drawdown. However, this standard LP formulation (STDLP) does not scale; the
LP solver runs out of memory when trying to repair more than 700 images (Fig-
ure 1). Thus, we developed a novel formulation (PRoViTLP) that scales to thou-
sands of images. The key insight for PRoViTLP is that only the last-layer param-
eters related to the labels of the images in the repair set need to be modified to
achieve provable correctness on the repair set (Section 3.2).

3. We observed that leveraging both last layer fine tuning and PRoViTLP to provably
repair Vision Transformers allows us to efficiently achieve both low drawdown
and high generalization. We present a combined approach, PRoViTFT+LP, to har-
ness the advantages of both fine tuning and PRoViTLP (Section 3.3).

4. We observed that last layer provable repair does not work well on non-Vision Trans-
former architectures (Section 4.3). This suggests that PRoViT is an approach par-
ticularly suited for Vision Transformers above all other types of DNNs.

To the best of our knowledge, PRoViT is the only approach for provable repair of
Vision Transformers with all of the following properties:

– Provable correctness guarantees: The repaired network returned by PRoViT is
guaranteed to classify all points in the repair set.

– Transformer architecture-preserving: The repair does not make any changes to
the original architecture of the Vision Transformer.

– Highly scalable: PRoViT successfully repairs large Vision Transformers and repair
sets with thousands of images.

– Efficient: The repair is efficient, remaining within the order of minutes to hours for
thousands of points.

– Low drawdown: PRoViT does not negatively impact the previous correct classifi-
cations of the Vision Transformer after repairing the images in the repair set.

– High generalization: The repair generalizes to images beyond those explicitly
present in the repair set.

The rest of the paper is organized as follows: Section 2 presents preliminaries; Sec-
tion 3 presents the PRoViT approach; Section 4 details the experimental evaluation of
PRoViT; Section 5 discusses related work; Section 6 concludes.

2 Preliminaries

In this section, we introduce terminology to define provable repair of DNNs (Sec-
tion 2.1), Vision Transformer architecture (Section 2.2), and the standard last layer LP
formulation, STDLP (Section 2.4).



2.1 Provable Repair of Deep Neural Networks

We use N θ to denote a deep neural network (DNN) with parameters θ, and N (x; θ) ∈
Rn to denote the output vector of the DNN on input vector x ∈ Rm. We drop the
parameters θ if they are clear from the context. In this paper, we restrict ourselves
to classification tasks; thus, n is the number of labels. We use accuracy(N θ, Λ) to
represent the accuracy of a DNN N θ on set Λ of inputs and expected labels.

Given a repair set S of inputs and labels, the goal of architecture-preserving prov-
able repair is to make small changes to the parameters of a given DNN N θ so that the
resulting DNN N θ′ has 100% accuracy on the repair set S .

Definition 1. Given a DNNN θ and a repair set S of inputs and labels, an architecture-
preserving provable repair finds parameters θ′ such that

∧
(x,l)∈S argmax(N (x; θ′)) =

l; that is, accuracy(N θ′ ,S) = 100%.

We use efficacy to refer to the accuracy of the repaired network on the given repair
set. Apart from efficacy, provable repair methods are also evaluated on drawdown and
generalization.

Definition 2. A drawdown set D is a set of points disjoint from the repair set and rep-
resentative of a DNN’s existing knowledge. For two DNNs N and N ′, the drawdown
of N ′ with respect to N is accuracy(N ,D)− accuracy(N ′,D). Lower drawdown is
better, representing less knowledge lost during repair.

Definition 3. A generalization set G is a set of points disjoint but similar to those in
the repair set. For two DNNs N and N ′, the generalization of N ′ with respect to N is
accuracy(N ′,G)− accuracy(N ,G). Higher generalization is better.

2.2 Vision Transformers

Our goal is to find an architecture-preserving provable repair approach for Vision Trans-
formers [5]. Vision Transformers are self-attention-based architectures that partition an
input image into patches for processing. Each patch is flattened into a 1D vector and
passed as input in sequence. Encoder layers process the patches, taking into account
their relations to one another via nonlinear operations: within the encoders, there are
layers of alternating multiheaded self-attention and multilayer perceptron blocks. Fi-
nally, the last encoder layer returns a class token, which is a vector representing the
predicted class of the input image. This class token is passed through the final feed-
forward layer(s) of the Vision Transformer to determine the label for the input image.
For more details on Transformer architectures and Vision Transformers in particular,
refer to [28] and [5], respectively.

2.3 Prior Approaches

There are a number of existing provable repair approaches including PRDNN [25], RE-
ASSURE [6], MMDNN [7], and APRNN [26]. PRDNN repairs a DNN by translating



its architecture into a “decoupled” DNN, essentially duplicating the network. REAS-
SURE repairs DNNs by adding “patch networks” to the original DNN architecture that
edit the behavior of the network in certain input regions. As such, PRDNN and REAS-
SURE are not architecture-preserving, so we turn to MMDNN and APRNN instead.

MMDNN and APRNN are both architecture-preserving provable repair methods,
but they cannot repair the encoder layers within Vision Transformers. MMDNN and
APRNN can both narrow their focus to only modify the last layer of a model and encode
the repair as a linear programming (LP) problem. We refer to the LP encoding for last
layer repair as STDLP.

2.4 STDLP Baseline

We now introduce terminology to define the standard last layer LP for provable repair,
STDLP. We use N (:−1) to represent a DNN N without its last layer N (−1). Similarly,
we use θ(:−1) to denote N ’s parameters excluding those in the last layer θ(−1). Thus,
N (:−1)(x; θ(:−1)) ∈ Rp is the input vector to the last layer of N for some input vector
x. p is the size of the input to the last layer. The parameters θ(−1) def

= {W, b} of the last
layer consist of weights W and biases b. W has shape p×n and b has shape n, where n
is the number of labels in the classification task.

First, we introduce symbolic parameters θ̂(−1) def
= {Ŵ, b̂} where Ŵ is a symbolic

matrix corresponding to W and b̂ is a symbolic bias vector corresponding to b. Ŵ and
b̂ represent the new weights and biases we must find to satisfy the repair specification.
Now, the output of the layer is ŷ = N (:−1)(x; θ(:−1))Ŵ + b̂ for an input vector x. ŷ is a
symbolic output vector with n elements, one for each label.

The following formula Φ(v, l, Ŵ, b̂) defines an output vector ŷ by performing the
symbolic last linear layer computation and ensures that the argmax of ŷ is l:

Φ(v, l, Ŵ, b̂) def
= ŷ = vŴ + b̂ ∧

∧
i 6=l

ŷl > ŷi (1)

The ŷ = vŴ + b̂ constraint in the formula defines the output vector ŷ according to
the symbolic linear layer computation of multiplying the concrete input vector v with
the symbolic weights Ŵ and adding the result to the symbolic biases b̂. The rest of the
constraints,

∧
i 6=l ŷl > ŷi, enforce that the argmax of the output vector ŷ is l. Intuitively,

representing the argmax function in the form of linear constraints requires that the value
of ŷl is greater than all other values ŷi in ŷ where i 6= l. Using this Φ definition, we
formulate STDLP as follows:

min
∥∥∥W− Ŵ

∥∥∥+ ∥∥∥b− b̂
∥∥∥

s.t.
∧

(x,l)∈S

Φ(v, l, Ŵ, b̂)

where v = N (:−1)(x; θ(:−1))

(2)

STDLP minimizes the change in weight and bias parameters Ŵ and b̂ subject to a set
of constraints for each (x, l) pair in the set S. We represent the change in parameters



using the upper bound of the p-norm where p = 1 or∞, which is linear and exact. For
each input, Equation 2 applies the Φ formula, imposing that the associated label is the
argmax of the associated output vector. The first argument to the Φ formula is the output
of the DNN’s penultimate layer. In other words, it is the concrete input to the last layer.
This collection of linear constraints forms an LP representing the desired behavior of
the DNN after solving for the parameters Ŵ and b̂.

An off-the-shelf LP solver can find a solution to Ŵ and b̂ that satisfies all of the
constraints if it exists. We then update the original parameters of the last layer, θ(−1),
with the solution to make θ(−1)new . The repairedN ’s parameters are θ′ = {θ(:−1), θ(−1)new },
meaning that the last layer’s parameters are updated while the remaining layers of the
DNN are identical to the original.

Proposition 1 ([7]). Given a repair set S and DNNN , θ′ solved by STDLP (Equation 2)
satisfies S .

Remark 1. The number of variables in STDLP (Equation 2) is n×p+n and the number
of constraints is n× |S|.

Proof. The symbolic matrix Ŵ is of size p × n, and each element of Ŵ is a variable.
Similarly, the symbolic vector b̂ is of size n, and each element of b̂ is a variable. In total,
there are n× p+ n variables in STDLP.

For each element in the repair set, we add n constraints: one to assign the value of y
and n− 1 to encode the argmax comparison. Each of these argmax constraints ensures
that the symbolic output associated with the correct label is greater than another label.
Because there are n labels, there must be n − 1 comparison constraints (as there is no
need to add a constraint to compare the correct label with itself). There are |S| points in
the repair set, so we multiply |S| with n to get n× |S| total constraints. The constraint
encoding the value of y could be omitted by just substituting of the value of y instead,
bringing the total number of constraints to (n− 1)× |S|.

2.5 FTall Baseline

STDLP is a type of architecture-preserving provable repair approach for Vision Trans-
formers. Consider another approach in this category based on fine-tuning. Fine tuning
is a well-studied strategy to adjust a DNN’s behavior on a set of points, usually disjoint
from the training set. The parameters θ of a DNN N are updated via gradient descent.
We define a variation of fine tuning, FTall, that continues to edit all of the parameters
of the DNN until the repair set is satisfied. FTall is not guaranteed to terminate, but if it
does, then all inputs are classified correctly; hence, it is a provable repair approach. We
will consider FTall and STDLP baselines to compare against our approach, PRoViT.

3 Approach

This section presents PRoViT, our scalable architecture-preserving provable repair method
for Vision Transformers. A key observation in this paper is that editing the parameters of



the last layer of a Vision Transformer is sufficient to find a high-quality provable repair:
one with low drawdown and high generalization. There are three variants of PRoViT:
PRoViTFT (Section 3.1), PRoViTLP (Section 3.2), and PRoViTFT+LP (Section 3.3).

3.1 Last Layer Fine Tuning: PRoViTFT

PRoViTFT is a gradient descent-based provable repair approach that runs fine tuning
on the last layer of the Vision Transformer until all images in the repair set are clas-
sified correctly. PRoViTFT leverages our observation that editing the last layer of a
Vision Transformer leads to high-quality repairs, unlike FTall which edits all weights
and biases in the Vision Transformer. PRoViTFT is a provable repair approach because
it continues to make edits until all images are classified correctly. PRoViTFT is efficient
and the repair generalizes well to other similar images (up to 54.33% accuracy gained
in Experiment 1, Section 4.1).

3.2 Novel LP Formulation: PRoViTLP

PRoViTLP is an LP-based provable repair approach that edits the last layer of the Vision
Transformer by solving for the weights and biases. PRoViTLP incorporates a novel last
layer repair LP formulation that scales significantly better than the baseline STDLP (Sec-
tion 2.4). The key insight behind our scalable LP formulation is that it is sufficient to
edit only the weights and biases associated with the labels that are present in the repair
set to achieve provable correctness. We describe this approach in more detail below:

Let (x, l) be an element of the repair set. It is sufficient to only modify the value
of yl to repair the DNN for x. Consequently, it is sufficient to only modify the l-th
column of the last-layer weight matrix W . Now let K be the set of labels present in the
entire repair set. PRoViTLP is based on the observation that it is sufficient in practice
to only adjust the values of those particular |K| elements of y and not modify the rest.
Consequently, it is sufficient in practice to only modify the columns corresponding to
K of the last-layer weight and bias matrices. See Figure 2 for a visualization of the
modifications PRoViTLP makes to the Vision Transformer’s parameters. In Figure 2,
the repair set contains images from just two of the classes, so |K| = 2.

Let us now convert K to a subsequence of [0, 1, . . . , n − 1] where n is the total
number of labels in the classification task. We define a submatrix of W, denoted W:,K ,
and a subvector of b, denoted bK . These submatrices are formed by selecting columns
of W and b indexed by K. W:,K has shape p × |K| and bK has shape |K| where p is
the size of the input to the last layer N (−1).

Example 1. Consider a matrix W =

[
1 3 5 7 9
2 4 6 8 10

]
. Then W:,Q =

[
3 5 9
4 6 10

]
where Q =

[1, 2, 4].

We introduce a symbolic matrix Ŵreduced and a symbolic vector b̂reduced to rep-
resent the weights and biases we must find to satisfy the repair set S . The shapes of
Ŵreduced and b̂reduced match W:,K and bK , respectively, since we will only find new
values for the weights and biases associated with the labels in K.
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Fig. 2: PRoViTLP repair visualization of the last layer of a DNN on a 4-label classifica-
tion task. In this example, the repair set contains images from just two of the classes,
so K = [0, 3] and |K| = 2. PRoViTLP only considers the weights in red for editing
(we omit biases in this example for brevity). In Figure 2b, each input neuron to the last
layer is labeled v0 through v4 (N (−2)), and each output neuron is labeled y0 through y3
(N (−1)). In Figure 2a, the values at those neurons are represented in vector form.

We encode the constraints to ensure that each repair point is correctly classified. Let
max(Y ) be a function that returns the maximum value in the vector Y . Φ is defined
in Equation 1. Note that in Equation 2, we used Φ to generate constraints associated
with all labels in the classification task; in Equation 3 we use Φ to generate constraints
associated only with the labels in K. We formulate the reduced LP for PRoViT as
follows:

min
∥∥∥W:,K − Ŵreduced

∥∥∥+ ∥∥∥bK − b̂reduced
∥∥∥

s.t.
∧

(x,l)∈S

(
Φ
(
v, l, Ŵreduced, b̂reduced

)
∧ ŷl > max

(
N (x, θ)

))
where v = N (:−1)(x; θ(:−1))

(3)

An LP solver can find a solution to Ŵreduced and b̂reduced that satisfies all of the con-
straints if it exists. We then update the original parameters of the last layer, θ(−1), with
the solution to make θ(−1)new . The repaired N ’s parameters are θ′ = {θ(:−1), θ(−1)new }.

Proposition 2. Given a repair set S and DNNN with parameters θ, the repaired DNN
with parameters θ′ solved by the LP in Equation 3 satisfies S.

Proof. Let θ′ be the parameters computed by the provable repair technique that uses
Equation 3. Let (x, l) be any element of the repair set S, and y′ = N (x, θ′). We will
show that argmax(y′) = l.

The argmax constraints in the Φ formula (Equation 1) ensure that

y′l > y′i for all i ∈ K − {l} (4)



Let y = N (x, θ). Equation 3 includes a constraint that employs the Φ formula to ensure
that y′l > yi for all i ∈ |y|. The outputs not associated with the labels in K are not
modified by the repair; thus, y′i = yi for all i /∈ K. Finally, the max(N (x, θ)) constraint
ensures that

y′l > y′i for all i /∈ K (5)

Using Equations 4 and 5, we have y′l > y′i, i 6= l; that is, argmax(y′) = l.

Remark 2. The number of variables in the LP in Equation 3 is p × |K| + |K| and the
number of constraints is |S| × (|K|+ 1).

Proof. The size of the symbolic matrix Ŵreduced is |K| × p and each element of
Ŵreduced is a variable. Similarly, the symbolic vector b̂reduced is of size |K| and each
element of b̂reduced is a variable. In total, there are p× |K|+ |K| variables in the LP.

The |K|+ 1 constraints consist of |K| − 1 constraints to encode the argmax across
the labels present in K. There is one constraint added to encode the value of the output
y and one more to encode the max function. There are |K|−1+2 = |K|+1 constraints
per element in the repair set, so there are (|K|+1)× |S| total constraints. Note that the
constraint that encodes the value of y can be omitted in implementations that employ
substitution of the value of y instead, which brings the total number of constraints to
|K| × |S|.

As demonstrated in Remark 1 and Remark 2, while the size of the original problem
(Equation 2) depends on the total number of labels in the classification task n, the size
of the reduced problem (Equation 3) depends on |K| ≤ n. Figure 2 shows a small-
scale instance of how |K| � n significantly reduces the number of variables and
constraints required for PRoViTLP.

3.3 PRoViTFT+LP

PRoViTFT+LP is a combination of last-layer fine tuning and PRoViTLP. Given a Vision
TransformerN and a repair set S, PRoViTFT+LP first runs one iteration of fine tuning on
the last layer ofN to quickly gain accuracy on the inputs in S. Fine tuning may achieve
100% efficacy at this stage, in which case PRoViTFT+LP returns the repaired N . If the
efficacy is not 100%, PRoViTFT+LP runs PRoViTLP to make additional edits to ensure
that all images in S are classified correctly. As shown in our experimental evaluations,
this approach strikes a nice balance between low drawdown and high generalization.

4 Experimental Evaluation

For our experimental evaluation, we repair Vision Transformers trained on ImageNet:
ViT-B/16 [5], ViT-L/32 [5] and DeiT [27]. Additionally, we evaluate our approach on
ResNet152 [10] and VGG19 [22] to demonstrate that last layer repairs are best suited
for Vision Transformers rather than other image recognition architectures. All exper-
iments (except for our scalability study in the Appendix, Section D) were run on a
machine with dual 16-core Intel Xeon Silver 4216 CPUs, 384 GB of memory, SSD and



(a) Miniature pinscher
with fog corruption.

(b) Combination lock
with brightness cor-
ruption.

(c) Traffic light with
frost corruption.

(d) Street sign with
snow corruption.

Fig. 3: Examples of images with different corruptions applied (from ImageNet-C [11]).

a NVIDIA RTX A6000 with 48 GB of GPU memory. We implemented PRoViT using
PyTorch [20] and Gurobi [9], a mathematical optimization solver for LP problems. Our
code is available at https://github.com/95616ARG/PRoViT.

We compare the 3 variants of PRoViT: (1) PRoViTLP (abbrev. LP), (2) PRoViTFT
(abbrev. FT), and (3) PRoViTFT+LP (abbrev. FT+LP) against the baselines FTall and
STDLP. We eliminated other baselines because they do not support Transformer ar-
chitectures or their approaches were specific to natural language processing tasks. We
evaluate the approaches using the following metrics:

– Efficiency: Amount of time taken to achieve 100% accuracy on the repair set.
– Drawdown: Measurement of the loss of accuracy on the test set.
– Generalization: Measurement of the increase in accuracy on images similar to those

in the repair set.

In our experimental evaluation, we repair weather-corrupted images from subsets of
classes from the ImageNet-C dataset [11]. Figure 3 shows a few examples of ImageNet-
C images. This dataset was created by corrupting images from the ImageNet test set.
The motivation for this experimental setup is as follows: Consider a self-driving vehicle
that processes image data and determines the correct course of action. Suppose that its
model classifies street signs and traffic signals poorly in bad weather. We can repair the
model using weather-corrupted images from the ImageNet-C dataset with labels “traffic
light” and “street sign” (Figure 3c, Figure 3d). Thus, the repair set can be reduced to a
specific subset of labels from the original classification task rather than including extra
examples from classes on which the model already performs well.

4.1 Experiment 1: Comparison with FTall

In this experiment, we compare FTall with the three variants of PRoViT. The goal of
this experiment is to demonstrate the benefits of restricting edits to just the last layer as
opposed to editing parameters across all layers of the Vision Transformer.
Repair Sets. We repair weather-corrupted images from the ImageNet-C dataset [11].
We select a random subset K of ImageNet labels such that |K| < n and repair 500
images for each of the selected labels. The 500 images are selected by choosing 4

https://github.com/95616ARG/PRoViT


Table 1: Drawdown and generalization results in Experiment 1 (Section 4.1). We com-
pare the baseline FTall with the three variants of PRoViT: PRoViTLP (LP), PRoViTFT
(FT), and PRoViTFT+LP (FT+LP). S is the repair set and K is the subset of labels corre-
sponding to the images in S. Bold number indicates the best result, underlined number
indicates the second best result, t/o indicates timeout in 20000 seconds. Recall that
lower drawdown is better and higher generalization is better. Negative drawdown means
that the accuracy on the drawdown set improved after repair.

Model |K| |S|
Drawdown [%] ↓ Generalization [%] ↑

FTall
PRoViT

FTall
PRoViT

LP FT FT+LP LP FT FT+LP

ViT-L/32

4 2000 76.80% 0.01% 0.22% 0.08% 24.70% 43.82% 53.40% 49.07%

8 4000 76.77% 0.01% 0.67% 0.23% 8.31% 32.18% 39.74% 38.96%

12 6000 76.66% 0.01% 1.05% 0.39% 8.35% 35.25% 42.14% 41.65%

16 8000 t/o 0.01% 2.19% 0.57% t/o 32.43% 37.80% 38.16%
20 10000 t/o 0.02% 3.24% 0.74% t/o 31.69% 36.20% 37.76%

DeiT

4 2000 81.51% -0.01% 0.28% -0.01% 36.18% 44.76% 54.33% 50.01%

8 4000 81.39% -0.01% 0.80% 0.06% 17.21% 32.87% 39.34% 38.05%

12 6000 t/o 0.00% 1.43% 0.14% t/o 34.77% 41.74% 40.37%

16 8000 t/o 0.05% 2.40% 0.40% t/o 31.99% 37.41% 38.02%
20 10000 t/o 0.05% 4.33% 0.62% t/o 31.45% 35.75% 37.49%

corruptions (fog, brightness, frost, and snow) of 5 base images. Each corruption has 5
severity levels. We apply 5 rotations (−10◦,−5◦, 0◦, 5◦, 10◦) to each image. In total,
this creates 4× 5× 5× 5 = 500 images per label in the repair set. In this experiment,
we increase the size of the repair set by incrementing the number of labels we include.
Thus, the size of each repair set is |K| × 500. The accuracy of ViT-L/32 on each repair
set ranges from 16–21%. The accuracy of DeiT on each repair set ranges from 17–24%.

Drawdown Set. We use the official ILSVRC2012 ImageNet validation set [4] to mea-
sure the drawdown of each repair. For ViT-L/32, the top-1 accuracy is 76.972%. For
DeiT, the top-1 accuracy is 81.742%.

Generalization Sets. The generalization sets include all weather-corrupted ImageNet-
C images within the selected |K| labels that are not present in the corresponding repair
set. There are 4 corruptions of the remaining 45 base images. Each corruption has 5
severity levels and we apply the same 5 rotations to each image. So for each label, there
are 4 × 45 × 5 × 5 = 4500 images in the generalization set. In total, the size of each
generalization set is |K| × 4500 where |K| is the number of labels in the repair set.

Comparison with Baseline. We compare the performance of PRoViTFT+LP against
the baseline, FTall. Table 1 shows the drawdown and generalization for both Vision



Table 2: Time spent in Experiment 1 (Section 4.1). We compare the baseline FTall
with the three variants of PRoViT: PRoViTLP (LP), PRoViTFT (FT), and PRoViTFT+LP
(FT+LP). S is the repair set and K is the subset of labels corresponding to the images
in S. Bold number indicates the best result, underlined number indicates the second
best result, t/o indicates timeout in 20000 seconds.

Model |K| |S| FTall
PRoViT

LP FT FT+LP

ViT-L/32

4 2000 8502s 440s 537s 541s

8 4000 12633s 964s 847s 1187s

12 6000 18869s 1598s 1230s 1834s

16 8000 t/o 2339s 3225s 2637s

20 10000 t/o 3095s 3960s 3576s

DeiT

4 2000 2681s 386s 2282s 535s

8 4000 9853s 820s 1950s 1204s

12 6000 t/o 1317s 1944s 1761s

16 8000 t/o 1952s 2642s 2473s

20 10000 t/o 2576s 3050s 3291s

Transformers. FTall results in terrible drawdown, causing the Vision Transformers to
lose most of their original test set accuracy. In addition, PRoViTFT+LP consistently out-
performs FTall’s generalization by about 20%. PRoViTFT+LP also results in near-zero
drawdown, never reaching more than 1%. Table 2 shows the time comparison between
our baseline FTall and our approach PRoViTFT+LP. FTall takes significantly more time
to repair than PRoViTFT+LP, so we set a timeout of 20000 seconds. Even as repair set
sizes reach into the thousands, PRoViTFT+LP is more efficient than FTall was on much
smaller repair sets.

Ablation Study. We compare the variations of PRoViT, as shown in both Table 1
and Table 2. For ViT-L/32, both the FT and LP variants of PRoViT are faster than
PRoViTFT+LP. However, for DeiT, the LP variant is always the fastest. The PRoViTLP
approach always achieves the best drawdown. The drawdown is sometimes even neg-
ative, meaning that instead of “forgetting” prior knowledge, additional accuracy was
gained on the test set. PRoViTFT has the best overall generalization. The results for
the FT+LP variation of PRoViT provide evidence of a nice trade-off between draw-
down and generalization. PRoViTFT+LP leverages the benefits of both variations while
still providing provable correctness guarantees. These results demonstrate PRoViT’s
efficiency, low drawdown, and high generalization, all while maintaining correctness
guarantees on the repair set. PRoViT’s success highlights the strength of targeting the
last layer of a Vision Transformer for repair.



PRoViT has a lower (better) drawdown than FTall. PRoViT consistently achieves
near 0% drawdown, while FTall’s drawdown is around 80%. PRoViT has a higher
(better) generalization than FTall, and FTall is inefficient and times out on larger
repair sets.

4.2 Experiment 2: Comparison with STDLP

In this experiment, we compare our linear programming approach, PRoViTLP, with the
baseline STDLP. This experiment produced the results shown in Figure 1 (Section 1)
and is meant to demonstrate the improved performance of our linear programming for-
mulation compared to the standard linear programming approach for provable repair.
Repair Sets. We repair weather-corrupted images from the ImageNet-C dataset [11].
We select a random subset K of ImageNet labels such that |K| < n and repair 50
images for each of the selected labels. The 50 images are selected by choosing 5 base
images with the brightness and fog corruptions. Each corruption has 5 severity levels.
In total, this creates 5×5×2 = 50 images per label in the repair set. In this experiment,
we increase the size of the repair set by incrementing the number of labels we include.
Thus, the size of each repair set is |K| × 50.
Drawdown Set. We use the official ILSVRC2012 ImageNet validation set [4] to mea-
sure the drawdown of each repair. For ViT-B/16, the top-1 accuracy is 81.068%.
Generalization Sets. The generalization sets include all of the brightness- and fog-
corrupted ImageNet-C images within the selected |K| labels that are not present in the
repair set. There are 45 remaining base images. Each corruption has 5 severity levels.
So for each label, there are 2× 45× 5 = 450 images in the generalization set. In total,
the size of each generalization set is |K| × 450.
Results. STDLP runs out of memory when the repair set size is greater than 700 images.
Figure 1 shows that PRoViTLP can successfully repair more images than STDLP. Refer
to Table 4 in the Appendix for detailed results of this experiment. In summary, gener-
alization and drawdown results for repair sets for which both PRoViTLP and STDLP
succeed are quite similar. PRoViTLP, however, outperforms STDLP in runtime by a sig-
nificant margin. For the repair set containing 700 images, STDLP takes 28115 seconds
whereas PRoViTLP only takes 261 seconds (Table 4). This is a 107x speedup. These re-
sults show that PRoViT can efficiently handle much larger repair sets for Vision Trans-
formers. PRoViTLP achieves similar drawdown and generalization to STDLP despite
having a smaller search space—fewer network parameters available to edit does not
decrease the quality of the repair.

PRoViTLP makes use of the assumption that, in practice, the repair set will consist
of only a small subset of the classes. If the repair set contains images from all classes,
PRoViTLP reduces to STDLP. We perform additional experiments in the Appendix:

– Section C shows that PRoViTLP outperforms STDLP in runtime on reduced Vi-
sion Transformers. These reduced Vision Transformers only classify a subset of
the original 1000 ImageNet labels, and, hence, are easier for STDLP to handle.

– Section D shows that PRoViT is able to handle repair sets with up to 40% of Ima-
geNet classes.



Table 3: Drawdown, generalization and timing results for non-ViT networks Experi-
ment 3 (Section 4.3). This table shows the results for a repair set with 2000 images
across 4 different labels. Bold number indicates the best result, underlined number in-
dicates the second best result. See Table 5 in Section B in the Appendix for an extended
version of this table.

Model
Drawdown [%] Generalization [%] Time [s]

PRoViT PRoViT PRoViT

LP FT FT+LP LP FT FT+LP LP FT FT+LP

ResNet152 11.28% 77.92% 77.87% 52.90% 56.58% 55.94% 1851s 1323s 2004s
VGG19 1.03% 56.01% 45.97% 50.14% 52.92% 52.68% 621s 4784s 848s

PRoViTLP is orders of magnitude faster than STDLP, and STDLP runs out of mem-
ory on repair set sizes larger than 700. PRoViTLP maintains drawdown and gen-
eralization parity with STDLP and continues to achieve low drawdown and good
generalization for repair sets on which STDLP fails.

4.3 Experiment 3: Comparison across Architectures

In this experiment, we demonstrate that restricting the repair to the last layer of a DNN
is not well suited for other image-recognition architectures, such as ResNet152 [10]
and VGG19 [22]. Like Vision Transformers, both ResNet152 and VGG19 have a fully-
connected linear last layer which can be repaired with PRoViT for our comparison.

Repair set. The repair set setup for this experiment is identical to that in Experiment 1
(Section 4.1). The accuracy of ResNet152 on the repair sets ranges from 10–12%. The
accuracy of VGG19 on the repair sets ranges from 7–9%.

Drawdown set. We use the official ILSVRC2012 ImageNet validation set [4] to mea-
sure the drawdown of each repair. For ResNet152, the top-1 accuracy is 78.312%. For
VGG19, the top-1 accuracy is 72.376%.

Generalization set. The generalization set setup for this experiment is identical to that
in Experiment 1 (Section 4.1).

Results. Table 3 shows the drawdown and generalization of the different variants of
PRoViT for the repair set with 2000 images across 4 labels. Table 5 in Section B in the
Appendix contains extended results for all repair sets evaluated in Table 1 and Table 2.
For these repairs, the generalization is good, but the drawdown is extremely high for
both ResNet152 and VGG19. Note that repairing these exact sets of images achieved
near 0% drawdown on the Vision Transformers. The LP approach resulted in the best
drawdown for these networks, but the repairs are still considerably worse than those
on the Vision Transformers. This provides insight into the key differences between the
ways convolutional architectures like ResNet and VGG distill information within im-
ages and how that information is reflected in the final output layer. The theoretical basis



for why PRoViT works well on Vision Transformers but not convolutional networks is
left to future work.

5 Related Work

5.1 Formal Methods for Training and Verification

Training DNNs that are robust to adversarial inputs has been extensively researched.
Müller et al. [19] present a certified DNN training approach that evaluates worst-case
loss on small boxes within the adversarial input region. Balunovic and Vechev [1] pro-
pose adversarial training in combination with provable defenses to achieve certified
robustness. Their approach aims to strike a balance between high test accuracy and
providing robustness certificates.

Formal verification methods prove whether a pre-trained DNN satisfies a given
specification. DeepPoly [23] is a verification tool that uses abstract transformers to
prove properties of DNNs. DeepT [3] is also a verification tool based on abstract in-
terpretation, specific to Transformer architectures. Both DeepPoly and DeepT return
counterexamples to the properties if they are found. These counterexamples can be used
as input to PRoViT. Shi et al. [21] have also addressed the verification of Transformers
by computing certified bounds to reflect the importance of specified inputs. Their ex-
periments, along with those in DeepT, focus mainly on NLP Transformers as opposed
to Vision Transformers.

5.2 Provable Repair of DNNs

The provable repair problem is a related but separate problem for DNNs. Certified train-
ing operates as a starting point for correctness guarantees, usually creating a model from
scratch. Verification methods aim to produce a certificate of correctness on a pre-trained
model; it does not make edits to the DNN at all. Provable repair, on the other hand, pro-
vides correctness guarantees for specified inputs by editing the model’s parameters.

Provable repair of DNNs was first introduced by Sotoudeh and Thakur [24], and
there have been a number of approaches since then. There are two types of provable re-
pair strategies for DNNs: architecture-modifying and architecture-preserving. The first
architecture-modifying approach proposed, called PRDNN [25], processes a DNN by
decoupling its structure. This architecture modification allows PRDNN to provide cor-
rectness guarantees about the parameter edits by formulating the problem as an LP. RE-
ASSURE [6] is another architecture-modifying provable repair approach. REASSURE
adds small “patch networks” to the original DNN architecture that activate for the inputs
that are in the repair set. The parameters of the patch networks can be designed to cor-
rect the behavior of the designated points in the repair set. REASSURE does not work
on Vision Transformer architectures due to the nonlinear activation functions within the
encoder layers.

Architecture-preserving provable repair methods guarantee the correctness of the
inputs post-repair without modifying the original structure of the DNN. Goldberger et
al. [7] proposed formulating the repair as an SMT query in their approach “minimal



modifications of deep neural networks” (MMDNN), but due to the nonlinear nature
of the activation functions, the method does not scale to large DNNs unless the repair
is restricted to the last layer. APRNN [26] formulates the repair problem as an LP by
adding activation pattern constraints. Thus, APRNN can successfully repair any layer
of a DNN. However, neither MMDNN nor APRNN scale to large Vision Transform-
ers, even when restricted to just the last layer, because they consider all parameters
corresponding to all output labels during repair. PRoViT is, hence, the only method
architecture-preserving provable repair method that scales to Vision Transformers.

5.3 Transformer Editing

While none of the prior provable repair approaches have focused on Transformer archi-
tectures, there are many approaches in recent research that focus on editing Transform-
ers without formal correctness guarantees. SERAC [18] tackles the Transformer editing
problem by storing edits in an explicit memory, acting as a wrapper around the base
Transformer model. In addition to the memory-based cache, SERAC also trains a scope
classifier and counterfactual model to determine when to override the base model dur-
ing inference. Transformer-Patcher [12] is another approach that, like PRoViT, makes
edits to the last layer of a Transformer. For each input, however, Transformer-Patcher
adds a neuron to the last layer to correct the output. This approach suffers from scala-
bility issues and significantly increases the inference time of the resulting Transformer
model.

ROME [16] is another model editing approach for Transformers based on identi-
fying neuron activations that determine a model’s predictions. The weights of a Trans-
former are updated based on these selected neurons to correct a particular “fact” in an
NLP Transformer. ROME only has the capability to update one fact at a time, so its scal-
ability is restricted. MEMIT [17] builds on ROME by tracing a “critical path” through
the MLP layers and updates the weights along this critical path to allow for thousands
of edits at once. This addresses the scalability issue of ROME, however both MEMIT
and ROME require the NLP facts to be in the form of a (subject, relation, object) for-
mat, and thus are not flexible to other types of model edits. We leave the evaluation of
PRoViT on NLP tasks to future work.

6 Conclusion

We presented PRoViT, a scalable architecture-preserving provable repair approach for
Vision Transformers. We leveraged the combination of fine tuning and linear program-
ming to make edits to the last layer of Vision Transformers. Our experimental evaluation
demonstrates that PRoViT is efficient, generalizes well, and avoids drawdown, all while
providing provable correctness guarantees on the repair set.
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A Experiment 2 Results

Table 4: Drawdown, generalization and timing results for Experiment 2 (Section 4.2):
repairing ViT-B/16 with STDLP vs. PRoViTLP. S is the repair set and K is the subset of
labels corresponding to the images in S. Bold number indicates the best result, “—”
indicates that the experiment ran out of memory. Recall that lower drawdown is better
and higher generalization is better. Negative drawdown means that the accuracy on the
drawdown set improved after repair.

|K| |S|
Drawdown [%] ↓ Generalization [%] ↑ Time [s]

STDLP PRoViTLP STDLP PRoViTLP STDLP PRoViTLP

2 100 0.0% -0.002% 0.0% 0.0% 1580s 17s
4 200 0.004% 0.002% 10.17% 10.06% 3235s 62s
6 300 -0.004% -0.01% 11.19% 11.11% 5315s 94s
8 400 -0.006% -0.01% 13.81% 13.67% 9725s 139s

10 500 -0.004% -0.008% 13.38% 13.2% 13682s 173s
12 600 -0.006% -0.01% 11.33% 11.17% 21775s 217s
14 700 0.028% 0.024% 12.02% 11.87% 28115s 261s
16 800 — 0.024% — 11.4% — 304s
26 1300 — 0.09% — 11.92% — 627s
28 1400 — 0.088% — 12.4% — 697s
30 1500 — 0.1% — 12.53% — 806s
32 1600 — 0.106% — 12.33% — 894s
34 1700 — 0.102% — 12.17% — 989s
36 1800 — 0.108% — 11.9% — 1157s
38 1900 — 0.114% — 11.82% — 1315s
40 2000 — 0.12% — 11.69% — 1423s



B Experiment 3 Additional Results

Table 5: Drawdown, generalization, and timing results for repairing non-ViT networks:
Experiment 3 (Section 4.3). We compare the three variants of PRoViT: PRoViTLP (LP),
PRoViTFT (FT), and PRoViTFT+LP (FT+LP). S is the repair set and K is the subset of
labels corresponding to the images in S. Bold number indicates the best result. Recall
that lower drawdown is better and higher generalization is better.

Model |K| |S| Drawdown [%] ↓ Generalization [%] ↑ Time [s]

LP FT FT+LP LP FT FT+LP LP FT FT+LP

ResNet152

4 2000 11.28% 77.92% 77.87% 52.90% 56.58% 55.94% 1851s 1323s 2004s
8 4000 13.46% 77.83% 77.58% 34.53% 28.59% 34.24% 3383s 1246s 3607s

12 6000 18.21% 77.54% 77.24% 35.88% 33.09% 36.45% 5904s 1314s 6075s
16 8000 21.28% 77.34% 76.97% 31.19% 27.11% 30.74% 8838s 2104s 8786s
20 10000 20.54% 77.27% 76.70% 29.10% 23.85% 28.00% 12881s 6614s 12525s

VGG19

4 2000 1.03% 56.01% 45.97% 50.14% 52.92% 52.68% 621s 4784s 848s
8 4000 1.15% 58.59% 47.74% 28.80% 29.97% 32.01% 3138s 1017s 3451s

12 6000 1.36% 53.09% 46.28% 28.45% 29.19% 31.34% 4526s 1669s 4718s
16 8000 1.82% 40.86% 44.35% 24.67% 24.36% 27.23% 7218s 2198s 7941s
20 10000 1.86% 38.47% 40.51% 22.22% 21.35% 24.92% 12835s 2328s 11889s

C Experiment 4: Comparison with STDLP on Reduced Vision
Transformers

The following experiment contains another baseline comparison with STDLP. Because
STDLP does not scale well (as shown in Section 4.2), we have reduced the Vision Trans-
formers to only include the first 50 ImageNet classes instead of the full 1000. This al-
lows us to make a more robust comparison of the two approaches. The experimental
setup is as follows:

Repair Sets. We repair weather-corrupted images from the ImageNet-C dataset [11].
We select the first |K| ImageNet labels and repair 100 images for each of the selected
labels. The 100 images are selected by choosing 4 corruptions of 5 base images: fog,
brightness, frost, and snow. Each corruption has 5 severity levels. In total, this creates
4× 5× 5 = 100 images per label in the repair set. In this experiment, we increase the
size of the repair set by incrementing the number of labels we include. Thus, the size of
each repair set is |K| × 500.

Drawdown Set. We use the official ILSVRC2012 ImageNet validation set [4] to mea-
sure the drawdown of each repair. For the reduced ViT-L/32, the top-1 accuracy is
85.52%. For the reduced DeiT, the top-1 accuracy is 88.52%.



Table 6: Drawdown and generalization results in Experiment 4 (Section C): Reduced Vi-
sion Transformer repair with just 50 ImageNet classes. We compare the baseline STDLP
with the three variants of PRoViT: PRoViTLP (LP), PRoViTFT (FT), and PRoViTFT+LP
(FT+LP). S is the repair set and K is the subset of labels corresponding to the im-
ages in S. Bold number indicates the best result. Recall that lower drawdown is better
and higher generalization is better. Negative drawdown means that the accuracy on the
drawdown set improved after repair.

Model |K| |S|
Drawdown [%] ↓ Generalization [%] ↑

STDLP
PRoViT

STDLP
PRoViT

LP FT FT+LP LP FT FT+LP

ViT-L/32

4 400 -0.04% -0.04% 0.28% 0.04% 1.80% 1.48% 1.09% 1.61%
8 800 -0.04% -0.04% 0.20% 0.00% 8.20% 8.15% 10.47% 8.50%

12 1200 0.20% 0.16% 2.92% 1.04% 7.98% 7.78% 4.84% 6.26%
16 1600 0.20% 0.24% 1.12% 0.28% 5.95% 5.98% 4.86% 6.14%
20 2000 0.20% 0.04% 2.60% 1.12% 7.73% 7.95% 4.03% 5.93%

DeiT

4 400 -0.04% -0.04% -0.16% -0.04% 0.60% 0.60% -0.36% 0.60%
8 800 -0.12% 0.00% 0.00% -0.04% 3.35% 4.48% 6.85% 5.42%

12 1200 8.00% 0.92% 2.36% 1.36% 10.42% 11.20% 7.91% 9.68%
16 1600 0.12% 0.08% 0.52% 0.16% 6.99% 7.23% 3.58% 7.89%
20 2000 0.36% 0.32% 2.68% 1.04% 10.83% 10.71% 6.36% 8.85%

Generalization Sets. The generalization sets include all weather-corrupted ImageNet-
C images within the selected |K| labels that are not present in the repair set. There are
4 corruptions of the remaining 45 base images. Each corruption has 5 severity levels.
So for each label, there are 4× 45× 5 = 900 images in the generalization set. In total,
the size of each generalization set is |K| × 900 where |K| is the number of labels in the
repair set.
Results. Table 6 shows that STDLP and PRoViT perform similarly on both drawdown
and generalization. Neither method outperforms the other by a significant margin. How-
ever, Table 7 shows that PRoViT significantly outperforms STDLP on runtime. This
result is similar to the results in Experiment 2, demonstrating consistency across the
different comparisons against the baseline. In this experiment, we observe speedups
between 2x and 9x when comparing PRoViT to STDLP.

Despite reducing the size of the Vision Transformers, PRoViTLP still runs faster
than STDLP while maintaining similar drawdown and generalization.

D Experiment 5: Scalability Study

In this experiment, we explore the scalability of PRoViT for repair sets with a larger
number of labels in the repair set (larger |K|). We run this experiment on a machine
with dual 32-core Intel Xeon Platinum 8362 (2.8 GHz) CPUs with 1.5 TB of memory,



Table 7: Time spent in Experiment 4 (Section C): Reduced Vision Transformer repair
with just 50 ImageNet classes. We compare the baseline STDLP with the three vari-
ants of PRoViT: PRoViTLP (LP), PRoViTFT (FT), and PRoViTFT+LP (FT+LP). Bold
number indicates the best result. S is the repair set and K is the subset of labels corre-
sponding to the images in S.

Model |K| |S|
STDLP

PRoViT

LP FT FT+LP

ViT-L/32

4 400 283s 80s 217s 79s
8 800 1520s 169s 418s 170s

12 1200 1983s 246s 614s 246s
16 1600 3309s 346s 1510s 345s
20 2000 3360s 468s 1881s 470s

DeiT

4 400 244s 92s 228s 92s
8 800 383s 186s 440s 185s

12 1200 1761s 283s 652s 282s
16 1600 1746s 387s 1608s 386s
20 2000 1941s 506s 1998s 478s

SSD and NVIDIA H100 with 80 GB of GPU memory. We repair both the ViT-L/32 and
DeiT Vision Transformers.

Repair sets. We repair fog-corrupted images from the ImageNet-C dataset [4]. We se-
lect |K| random ImageNet labels and repair 5 images with severity level 3 for each of
the selected labels. In this experiment, we increase the size of the repair set by incre-
menting the number of labels we include. Thus, the size of each repair set is |K| × 5.
We reduce the number of images included per label compared to prior experiments due
to memory constraints—this experiment focuses on PRoViT’s scalability as the number
of labels increases.

Drawdown set. We use the same drawdown set as in Experiment 1 (Section 4.1). The
original accuracies are identical because we are repairing the same Vision Transformers
as before.

Generalization sets. The generalization sets include the remaining fog-corrupted im-
ages with severity level 3 for each label in the repair set. There are 45 such images per
label. Thus, the size of each generalization set is |K| × 45.

Results. Table 8 and Table 9 show that PRoViT succeeds on repair sets that contain
up to 400 different labels. 400 labels equates to 40% of the total 1000 ImageNet labels.
Similar to the previous experiments, drawdown is lowest on the PRoViTLP variation
of our approach. Generalization is best when using the PRoViTFT and PRoViTFT+LP
variations. Notably, PRoViTFT was the fastest; this is due to the fact that including
more labels in the repair set slows down the LP-based approaches. Overall, however,



Table 8: Drawdown and generalization results in Experiment 5 (Section D), which mea-
sures scalability to repair sets with a larger number of labels. We compare the three
variants of PRoViT: PRoViTLP (LP), PRoViTFT (FT), and PRoViTFT+LP (FT+LP). S is
the repair set andK is the subset of labels corresponding to the images in S. Bold num-
ber indicates the best result, underlined number indicates the second best result. Recall
that lower drawdown is better and higher generalization is better. Negative drawdown
means that the accuracy on the drawdown set improved after repair.

Model % of Labels |K| |S|
Drawdown [%] ↓ Generalization [%] ↑

LP FT FT+LP LP FT FT+LP

ViT-L/32

10% 100 500 0.04% 1.41% 1.24% 8.63% 21.73% 21.94%
20% 200 1000 0.06% 3.37% 3.17% 7.80% 18.42% 18.07%

30% 300 1500 0.11% 4.88% 4.52% 6.70% 14.77% 14.66%

40% 400 2000 0.12% 5.71% 5.30% 5.43% 11.49% 11.38%

DeiT

10% 100 500 0.01% 1.24% 1.07% 8.64% 21.76% 21.82%
20% 200 1000 0.01% 3.04% 2.67% 8.09% 17.76% 17.70%

30% 300 1500 0.01% 4.51% 4.12% 6.94% 14.27% 14.57%
40% 400 2000 -0.01% 5.26% 4.88% 5.80% 11.61% 11.66%

this experiment demonstrates that PRoViT is not limited to only repair sets with a
minimal number of labels and can successfully repair thousands of images.

PRoViT can handle repair sets that include up to 400 unique labels while maintaining
near 0% drawdown and good generalization.



Table 9: Time spent in Experiment 5 (Section D), which measures scalability to re-
pair sets with a larger number of labels. We compare the three variants of PRoViT:
PRoViTLP (LP), PRoViTFT (FT), and PRoViTFT+LP (FT+LP). S is the repair set and K
is the subset of labels corresponding to the images in S. Bold number indicates the
best result, underlined number indicates the second best result.

Model |K| |S|
PRoViT

LP FT FT+LP

ViT-L/32

100 500 3287s 14s 1373s

200 1000 30094s 28s 14399s

300 1500 68888s 40s 39554s

400 2000 151557s 53s 111958s

DeiT

100 500 1100s 10s 764s

200 1000 13521s 19s 5431s

300 1500 29769s 29s 15225s

400 2000 85273s 39s 41217s
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