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Abstract. Practical adoption of static analysis often requires trading
precision for performance. This paper focuses on improving the memory
efficiency of abstract interpretation without sacrificing precision or time
efficiency. Computationally, abstract interpretation reduces the problem
of inferring program invariants to computing a fixpoint of a set of equa-
tions. This paper presents a method to minimize the memory footprint
in Bourdoncle’s iteration strategy, a widely-used technique for fixpoint
computation. Our technique is agnostic to the abstract domain used. We
prove that our technique is optimal (i.e., it results in minimum memory
footprint) for Bourdoncle’s iteration strategy while computing the same
result. We evaluate the efficacy of our technique by implementing it in a
tool called Mikos, which extends the state-of-the-art abstract interpreter
IKOS. When verifying user-provided assertions, Mikos shows a decrease
in peak-memory usage to 4.07% (24.57×) on average compared to IKOS.
When performing interprocedural buffer-overflow analysis, Mikos shows
a decrease in peak-memory usage to 43.7% (2.29×) on average compared
to IKOS.

1 Introduction

Abstract interpretation [14] is a general framework for expressing static analysis
of programs. Program invariants inferred by an abstract interpreter are used in
client applications such as program verifiers, program optimizers, and bug find-
ers. To extract the invariants, an abstract interpreter computes a fixpoint of an
equation system approximating the program semantics. The efficiency and preci-
sion of the abstract interpreter depends on the iteration strategy, which specifies
the order in which the equations are applied during fixpoint computation.

The recursive iteration strategy developed by Bourdoncle [10] is widely used
for fixpoint computation in academic and industrial abstract interpreters such
as NASA IKOS [11], Crab [32], Facebook SPARTA [16], Kestrel Technology
CodeHawk [48], and Facebook Infer [12]. Extensions to Bourdoncle’s approach
that improve precision [1] and time efficiency [26] have also been proposed.

This paper focuses on improving the memory efficiency of abstract interpre-
tation. This is an important problem in practice because large memory require-
ments can prevent clients such as compilers and developer tools from using
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sophisticated analyses. This has motivated approaches for efficient implemen-
tations of abstract domains [4,25,44], including techniques that trade precision
for efficiency [5,17,24].

This paper presents a technique for memory-efficient fixpoint computation.
Our technique minimizes the memory footprint in Bourdoncle’s recursive iter-
ation strategy. Our approach is agnostic to the abstract domain and does not
sacrifice time efficiency. We prove that our technique exhibits optimal peak-
memory usage for the recursive iteration strategy while computing the same
fixpoint (Sect. 3). Specifically, our approach does not change the iteration order
but provides a mechanism for early deallocation of abstract values. Thus, there
is no loss of precision when improving memory performance. Furthermore, such
“backward compatibility” ensures that existing implementations of Bourdoncle’s
approach can be replaced without impacting clients of the abstract interpreter,
an important requirement in practice.

1 2 3 4 5 6

8 7 9

Fig. 1. Control-flow graph G1

Suppose we are tasked with proving assertions at program points 4 and 9 of
the control-flow graph G1(V, ) in Fig. 1. Current approaches (Sect. 2.1) allocate
abstract values for each program point during fixpoint computation, check the
assertions at 4 and 9 after fixpoint computation, and then deallocate all abstract
values. In contrast, our approach deallocates abstract values and checks the
assertions during fixpoint computation while guaranteeing that the results of
the checks remain the same and that the peak-memory usage is optimal.

We prove that our approach deallocates abstract values as soon as they are no
longer needed during fixpoint computation. Providing this theoretical guarantee
is challenging for arbitrary irreducible graphs such as G1. For example, assuming
that node 8 is analyzed after 3, one might think that the fixpoint iterator can
deallocate the abstract value at 2 once it analyzes 8. However, 8 is part of the
strongly-connected component {7, 8}, and the fixpoint iterator might need to
iterate over node 8 multiple times. Thus, deallocating the abstract value at 2
when node 8 is first analyzed will lead to incorrect results. In this case, the
earliest that the abstract value at 2 can be deallocated is after the stabilization
of component {7, 8}.

Furthermore, we prove that our approach performs the assertion checks as
early as possible during fixpoint computation. Once the assertions are checked,
the associated abstract values are deallocated. For example, consider the asser-
tion check at node 4. Notice that 4 is part of the strongly-connected components
{4, 5} and {3, 4, 5, 6}. Checking the assertion the first time node 4 is analyzed
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could lead to an incorrect result because the abstract value at 4 has not con-
verged. The earliest that the check at node 4 can be executed is after the conver-
gence of the component {3, 4, 5, 6}. Apart from being able to deallocate abstract
values earlier, early assertion checks provide partial results on timeout.

The key theoretical result (Theorem 1) is that our iteration strategy is
memory-optimal (i.e., it results in minimum memory footprint) while computing
the same result as Bourdoncle’s approach. Furthermore, we present an almost-
linear time algorithm to compute this optimal iteration strategy (Sect. 4).

We have implemented this memory-optimal fixpoint computation in a tool
called Mikos (Sect. 5), which extends the state-of-the-art abstract interpreter
for C/C++, IKOS [11]. We compared the memory efficiency of Mikos and IKOS
on the following tasks:

T1 Verifying user-provided assertions. Task T1 represents the program-
verification client of a fixpoint computation. We performed interprocedu-
ral analysis of 784 SV-COMP 2019 benchmarks [6] using reduced product
of Difference Bound Matrix with variable packing [17] and congruence [20]
domains.

T2 Proving absence of buffer overflows. Task T2 represents the bug-finding and
compiler-optimization client of fixpoint computation. In the context of bug
finding, a potential buffer overflow can be reported to the user as a potential
bug. In the context of compiler optimization, code to check buffer-access
safety can be elided if the buffer access is verified to be safe. We performed
interprocedural buffer overflow analysis of 426 open-source programs using
the interval abstract domain.

On Task T1, Mikos shows a decrease in peak-memory usage to 4.07% (24.57×)
on average compared to IKOS. For instance, peak-memory required to analyze
the SV-COMP 2019 benchmark ldv-3.16-rc1/205_9a-net-rtl8187 decreased
from 46 GB to 56 MB. Also, while ldv-3.14/usb-mxl111sf spaced out in
IKOS with 64 GB memory limit, peak-memory usage was 21 GB for Mikos.
On Task T2, Mikos shows a decrease in peak-memory usage to 43.7% (2.29×)
on average compared to IKOS. For instance, peak-memory required to analyze
a benchmark ssh-keygen decreased from 30 GB to 1 GB.

The contributions of the paper are as follows:

– A memory-optimal technique for Bourdoncle’s recursive iteration strategy
that does not sacrifice precision or time efficiency (Sect. 3).

– An almost-linear time algorithm to construct our memory-efficient iteration
strategy (Sect. 4).

– Mikos, an interprocedural implementation of our approach (Sect. 5).
– An empirical evaluation of the efficacy of Mikos using a large set of C bench-

marks (Sect. 6).

Sect. 2 presents necessary background on fixpoint computation, including Bour-
doncle’s approach; Sect. 7 presents related work; Sect. 8 concludes.
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2 Fixpoint Computation Preliminaries

This section presents background on fixpoint computation that will allow us to
clearly state the problem addressed in this paper (Sect. 2.3). This section is
not meant to capture all possible approaches to implementing abstract interpre-
tation. However, it does capture the relevant high-level structure of abstract-
interpretation implementations such as IKOS [11].

Consider an equation system Φ whose dependency graph is G(V, ). The
graph G typically reflects the control-flow graph of the program, though this is
not always true. The aim is to find the fixpoint of the equation system Φ:

Pre[v] =
⊔

{Post[p] | p v} v ∈ V (1)

Post[v] = τv(Pre[v]) v ∈ V

The maps Pre : V → A and Post : V → A maintain the abstract values at the
beginning and end of each program point, where A is an abstract domain. The
abstract transformer τv : A → A overapproximates the semantics of program
point v ∈ V . After fixpoint computation, Pre[v] is an invariant for v ∈ V .

Client applications of the abstract interpreter typically query these fixpoint
values to perform assertion checks, program optimizations, or report bugs. Let
VC ⊆ V be the set of program points where such checks are performed, and let
ϕv : A → bool represent the corresponding functions that performs the check for
each v ∈ VC . To simplify presentation, we assume that the check function merely
returns true or false. Thus, after fixpoint computation, the client application
computes ϕv(Pre[v]) for each v ∈ VC .

The exact least solution of the system Eq. 1 can be computed using Kleene
iteration provided A is Noetherian. However, most interesting abstract domains
require the use of widening (▽) to ensure termination followed by narrowing to
improve the post solution. In this paper, we use “fixpoint” to refer to such an
approximation of the least fixpoint. Furthermore, for simplicity of presentation,
we restrict our description to a simple widening strategy. However, our imple-
mentation (Sect. 5) uses more sophisticated widening and narrowing strategies
implemented in state-of-the-art abstract interpreters [1,11].

An iteration strategy specifies the order in which the individual equations
are applied, where widening is used, and how convergence of the equation sys-
tem is checked. For clarity of exposition, we introduce a Fixpoint Machine (FM )
consisting of an imperative set of instructions. An FM program represents a par-
ticular iteration strategy used for fixpoint computation. The syntax of Fixpoint
Machine programs is defined by the following grammar:

Prog :: = exec v | repeat v [Prog] | Prog # Prog , v ∈ V (2)

Informally, the instruction exec v applies τv for v ∈ V ; the instruction
repeat v [P1] repeatedly executes the FM program P1 until convergence and
performs widening at v; and the instruction P1 #P2 executes FM programs P1 and
P2 in sequence.
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The syntax (Eq. 2) and semantics (Fig. 2) of the Fixpoint Machine are suffi-
cient to express Bourdoncle’s recursive iteration strategy (Sect. 2.1), a widely-
used approach for fixpoint computation [10]. We also extend the notion of iter-
ation strategy to perform memory management of the abstract values as well as
perform checks during fixpoint computation (Sect. 2.2).

2.1 Bourdoncle’s Recursive Iteration Strategy

In this section, we review Bourdoncle’s recursive iteration strategy [10] and show
how to generate the corresponding FM program.

Bourdoncle’s iteration strategy relies on the notion of weak topological order-
ing (WTO) of a directed graph G(V, ). A WTO is defined using the notion of
a hierarchical total ordering (HTO) of a set.

Definition 1. A hierarchical total ordering H of a set S is a well parenthesized
permutation of S without two consecutive “(”. �

An HTO H is a string over the alphabet S augmented with left and right paren-
thesis. Alternatively, we can denote an HTO H by the tuple (S, �, ω), where �
is the total order induced by H over the elements of S and ω : V → 2V . The
elements between two matching parentheses are called a component, and the first
element of a component is called the head. Given l ∈ S, ω(l) is the set of heads
of the components containing l. We use C : V → 2V to denote the mapping from
a head to its component.

Example 1. Let V = {1, 2, 3, 4, 5, 6, 7, 8, 9}. An example HTO H1(V, �, ω) is
1 2 (3 (4 5) 6) (7 8) 9. ω(3) = {3}, ω(5) = {3, 4}, and ω(1) = ∅. It has compo-
nents C(4) = {4, 5}, C(7) = {7, 8} and C(3) = {3, 6} ∪ C(4). �

A weak topological ordering (WTO) W of a directed graph G(V, ) is an
HTO H(V, �, ω) satisfying certain constraints listed below:

Definition 2. A weak topological ordering W(V, �, ω) of a directed graph
G(V, ) is an HTO H(V, �, ω) such that for every edge u → v, either (i) u ≺ v,
or (ii) v � u and v ∈ ω(u). �

Example 2. HTO H1 in Example 1 is a WTO W1 of the graph G1 (Fig. 1). �

Given a directed graph G(V, ) that represents the dependency graph of the
equation system, Bourdoncle’s approach uses a WTO W(V, �, ω) of G to derive
the following recursive iteration strategy:

– The total order � determines the order in which the equations are applied.
The equation after a component is applied only after the component stabilizes.

– The stabilization of a component C(h) is determined by checking the stabi-
lization of the head h.

– Widening is performed at each of the heads.
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We now show how the WTO can be represented using the syntax of our Fixpoint
Machine (FM) defined in Eq. 2. The following function genProg: WTO → Prog

maps a given WTO W to an FM program:

genProg(W) :=











repeat v [genProg(W ′)] if W = (v W ′)

genProg(W1) # genProg(W2) if W = W1 W2

exec v if W = v

(3)

Each node v ∈ V is mapped to a single FM instruction by genProg; we use Inst[v]
to refer to this FM instruction corresponding to v. Note that if v ∈ V is a head,
then Inst[v] is an instruction of the form repeat v [ . . .], else Inst[v] is exec v.

Example 3. The WTO W1 of graph G1 (Fig. 1) is 1 2 (3 (4 5) 6) (7 8) 9.
The corresponding FM program is P1 = genProg(W1) = exec 1 # exec 2 #
repeat 3 [repeat 4 [exec 5] # exec 6] # repeat 7 [exec 8] # exec 9. The
colors used for brackets and parentheses are to more clearly indicate the corre-
spondence between the WTO and the FM program. Note that Inst[1] = exec 1,
and Inst[4] = repeat 4 [exec 5]. �

Ignoring the text in gray, the semantics of the FM instructions shown in Fig. 2
capture Bourdoncle’s recursive iteration strategy. The semantics are parameter-
ized by the graph G(V, ) and a WTO W(V, �, ω).

2.2 Memory Management During Fixpoint Computation

In this paper, we extend the notion of iteration strategy to indicate when abstract
values are deallocated and when checks are executed. The gray text in Fig. 2
shows the semantics of the FM instructions that handle these issues. The right-
hand side of ⇒ is executed if the left-hand side evaluates to true. Recall that
the set VC ⊆ V is the set of program points that have assertion checks. The map
Ck : VC → bool records the result of executing the check ϕu(Pre[u]) for each
u ∈ VC . Thus, the output of the FM program is the map Ck. In practice, the
functions ϕu are expensive to compute. Furthermore, they often write the result
to a database or report the output to a user. Consequently, we assume that only
the first execution of ϕu is recorded in Ck.

The memory configuration M is a tuple (Dpost,Achk,Dpost
ℓ,Dpre

ℓ)
where

– The map Dpost : V → V controls the deallocation of values in Post that
have no further use. If v = Dpost[u], Post[u] is deallocated after the execu-
tion of Inst[v].

– The map Achk : VC → V controls when the check function ϕu corresponding
to u ∈ VC is executed, after which the corresponding Pre value is deallocated.
If Achk[u] = v, assertions in u are checked and Pre[u] is subsequently deal-
located after the execution of Inst[v].
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Fig. 2. The semantics of the Fixpoint Machine (FM) instructions of Eq. 2.

– The map Dpost
ℓ : V → 2V control deallocation of Post values that are

recomputed and overwritten in the loop of a repeat instruction before its
next use. If v ∈ Dpost

ℓ[u], Post[u] is deallocated in the loop of Inst[v].
– The map Dpre

ℓ : VC → 2V control deallocation of Pre values that recom-
puted and overwritten in the loop of a repeat instruction before its next use.
If v ∈ Dpre

ℓ[u], Pre[u] is deallocated in the loop of Inst[v].

To simplify presentation, the semantics in Fig. 2 does not make explicit the
allocations of abstract values: if a Post or Pre value that has been deallocated
is accessed, then it is allocated and initialized to ⊥.

2.3 Problem Statement

Two memory configurations are equivalent if they result in the same values for
each check in the program:
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Definition 3. Given an FM program P , memory configuration M1 is equivalent
to M2, denoted by JP KM1

= JP KM2
, iff for all u ∈ VC , we have Ck1[u] =

Ck2[u], where Ck1 and Ck2 are the check maps corresponding to execution of
P using M1 and M2, respectively. �

The default memory configuration Mdflt performs checks and deallocations
at the end of the FM program after fixpoint has been computed.

Definition 4. Given an FM program P , the default memory configuration Mdflt

(Dpostdflt,Achkdflt,Dpost
ℓ
dflt,Dpre

ℓ
dflt) is Dpostdflt[v] = z for all v ∈ V ,

Achkdflt[c] = z for all c ∈ VC , and Dpost
ℓ
dflt = Dpre

ℓ
dflt = ∅, where z is the

last instruction in P . �

Example 4. Consider the FM program P1 from Example 3. Let VC = {4, 9}.
Dpostdflt[v] = 9 for all v ∈ V . That is, all Post values are deallocated at the
end of the fixpoint computation. Also, Achkdflt[4] = Achkdflt[9] = 9, meaning
that assertion checks also happen at the end. Dpost

ℓ
dflt = Dpre

ℓ
dflt = ∅, so

the FM program does not clear abstract values whose values will be recomputed
and overwritten in a loop of repeat instruction. �

Given an FM program P , a memory configuration M is valid for P iff it is
equivalent to the default configuration; i.e., JP KM = JP KMdflt

.
Furthermore, a valid memory configuration M is optimal for a given FM

program iff memory footprint of JP KM is smaller than or equal to that of JP KM′

for all valid memory configuration M′. The problem addressed in this paper can
be stated as:

Given an FM program P , find an optimal memory configuration M.

An optimal configuration should deallocate abstract values during fixpoint
computation as soon they are no longer needed. The challenge is ensuring that
the memory configuration remains valid even without knowing the number of
loop iterations for repeat instructions. Sect. 3 gives the optimal memory con-
figuration for the FM program P1 from Example 3.

3 Declarative Specification of Optimal Memory

Configuration Mopt

This section provides a declarative specification of an optimal memory configu-
ration Mopt(Dpostopt,Achkopt,Dpost

ℓ
opt,Dpre

ℓ
opt). The proofs of the the-

orems in this section can be found in Appendix A. Sect. 4 presents an efficient
algorithm for computing Mopt.

Definition 5. Given a WTO W(V, �, ω) of a graph G(V, ), the nesting rela-
tion N is a tuple (V, �N) where x �N y iff x = y or y ∈ ω(x) for x, y ∈ V . �



Memory-Efficient Fixpoint Computation 43

Let ⌊⌊v⌉�N

def

= {w ∈ V | v �N w}; that is, ⌊⌊v⌉�N
equals the set containing v

and the heads of components in the WTO that contain v. The nesting relation
N(V, �N) is a forest ; i.e. a partial order such that for all v ∈ V , (⌊⌊v⌉�N

, �N) is a
chain (Theorem 4, Appendix A.1).

Example 5. For the WTO W1 of G1 in Example 2, N1(V, �N) is:
1 2 3 7 9

4 6

5

8 .

Note that ⌊⌊5⌉�N
= {5, 4, 3}, forming a chain 5 �N 4 �N 3. �

3.1 Declarative Specification of Dpostopt

Dpostopt[u] = v implies that v is the earliest instruction at which Post[u] can
be deallocated while ensuring that there are no subsequents reads of Post[u] dur-
ing fixpoint computation. We cannot conclude Dpostopt[u] = v from a depen-
dency u v as illustrated in the following example.

Example 6. Consider the FM program P1 from Example 3, whose graph G1(V, )
is in Fig. 1. Although 2 8, memory configuration with Dpost[2] = 8 is not
valid: Post[2] is read by Inst[8], which is executed repeatedly as part of Inst[7];
if Dpost[2] = 8, Post[2] is deallocated the first time Inst[8] is executed, and
subsequent executions of Inst[8] will read ⊥ as the value of Post[2]. �

In general, for a dependency u v, we must find the head of maximal com-
ponent that contains v but not u as the candidate for Dpostopt[u]. By choosing
the head of maximal component, we remove the possibility of having a larger
component whose head’s repeat instruction can execute Inst[v] after deallo-
cating Post[u]. If there is no component that contains v but not u, we simply
use v as the candidate. The following Lift operator gives us the candidate of
Dpostopt[u] for u v:

Lift(u, v)
def

= max�N
((⌊⌊v⌉�N

\ ⌊⌊u⌉�N
) ∪ {v}) (4)

⌊⌊v⌉�N
gives us v and the heads of components that contain v. Subtracting ⌊⌊u⌉�N

removes the heads of components that also contain u. We put back v to account
for the case when there is no component containing v but not u and ⌊⌊v⌉�N

\⌊⌊u⌉�N

is empty. Because N(V, �N) is a forest, ⌊⌊v⌉�N
and ⌊⌊u⌉�N

are chains, and hence,
⌊⌊v⌉�N

\ ⌊⌊u⌉�N
is also a chain. Therefore, maximum is well-defined.

Example 7. Consider the nesting relation N1(V, �N) from Example 5.
Lift(2, 8) = max�N

(({8, 7} \ {2}) ∪ {8}) = 7. We see that 7 is the head of the
maximal component containing 8 but not 2. Also, Lift(5, 4) = max�N

(({4, 3} \
{5, 4, 3}) ∪ {4}) = 4. There is no component that contains 4 but not 5. �

For each instruction u, we now need to find the last instruction from among
the candidates computed using Lift. Notice that deallocations of Post values
are at a postamble of repeat instructions in Fig. 2. Therefore, we cannot use the
total order � of a WTO to find the last instruction: � is the order in which the
instruction begin executing, or the order in which preambles are executed.
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Example 8. Let Dpostto[u]
def

= max�{Lift(u, v) | u v}, u ∈ V , an incor-
rect variant of Dpostopt that uses the total order �. Consider the FM program
P1 from Example 3, whose graph G1(V, ) is in Fig. 1 and nesting relation
N1(V, �N) is in Example 5. Post[5] has dependencies 5 4 and 5 3.
Lift(5, 4) = 4, Lift(5, 3) = 3. Now, Dpostto[5] = 4 because 3 � 4. How-
ever, a memory configuration with Dpost[5] = 4 is not valid: Inst[4] is nested
in Inst[3]. Due to the deletion of Post[5] in Inst[4], Inst[3] will read ⊥ as the
value of Post[5]. �

To find the order in which the instructions finish executing, or the order in
which postambles are executed, we define the relation (V, ≤), using the total
order (V, �) and the nesting relation (V, �N):

x ≤ y
def

= x �N y ∨ (y 6�N x ∧ x � y) (5)

In the definition of ≤, the nesting relation �N takes precedence over �. (V, ≤)
is a total order (Theorem 5, Appendix A.1). Intuitively, the total order ≤ moves
the heads in the WTO to their corresponding closing parentheses ‘)’.

Example 9. For G1 (Fig. 1) and its WTO W1, 1 2 (3 (4 5) 6) (7 8) 9, we have
1 ≤ 2 ≤ 5 ≤ 4 ≤ 6 ≤ 3 ≤ 8 ≤ 7 ≤ 9. Note that 3 � 6 while 6 ≤ 3. Postamble of
repeat 3 [ . . . ] is executed after Inst[6], while preamble of repeat 3 [ . . .] is
executed before Inst[6]. �

We can now define Dpostopt. Given a nesting relation N(V, �N) for the graph
G(V, ), Dpostopt is defined as:

Dpostopt[u]
def

= max≤{Lift(u, v) | u v}, u ∈ V (6)

Example 10. Consider the FM program P1 from Example 3, whose graph
G1(V, ) is in Fig. 1 and nesting relation N1(V, �N) is in Example 5. An optimal
memory configuration Mopt defined by Eq. 6 is:

Dpostopt[1] = 2, Dpostopt[2] = Dpostopt[3] = Dpostopt[8] = 7, Dpostopt[4] = 6,

Dpostopt[5] = Dpostopt[6] = 3, Dpostopt[7] = Dpostopt[9] = 9.

Successors of u are first lifted to compute Dpostopt[u]. For example, to
compute Dpostopt[2], 2’s successors, 3 and 8, are lifted to Lift(2, 3) = 3 and
Lift(2, 8) = 7. To compute Dpostopt[5], 5’s successors, 3 and 4, are lifted to
Lift(5, 3) = 3 and Lift(5, 4) = 4. Then, the maximum (as per the total order ≤)
of the lifted successors is chosen as Dpostopt[u]. Because 3 ≤ 7, Dpostopt[2] = 7.
Thus, Post[2] is deleted in Inst[7]. Also, because 4 ≤ 3, Dpostopt[5] = 3, and
Post[5] is deleted in Inst[3]. �
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3.2 Declarative Specification of Achkopt

Achkopt[u] = v implies that v is the earliest instruction at which the assertion
check at u ∈ VC can be executed so that the invariant passed to the assertion
check function ϕu is the same as when using Mdflt. Thus, guaranteeing the same
check result Ck.

Because an instruction can be executed multiple times in a loop, we cannot
simply execute the assertion checks right after the instruction, as illustrated by
the following example.

Example 11. Consider the FM program P1 from Example 3. Let VC = {4, 9}.
A memory configuration with Achk[4] = 4 is not valid: Inst[4] is executed
repeatedly as part of Inst[3], and the first value of Pre[4] may not be the final
invariant. Consequently, executing ϕ4(Pre[4]) in Inst[4] may not give the same
result as executing it in Inst[9] (Achkdflt[4] = 9). �

In general, because we cannot know the number of iterations of the loop in a
repeat instruction, we must wait for the convergence of the maximal component
that contains the assertion check. After the maximal component converges, the
FM program never visits the component again, making Pre values of the elements
inside the component final. Only if the element is not in any component can its
assertion check be executed right after its instruction.

Given a nesting relation N(V, �N) for the graph G(V, ), Achkopt is defined
as:

Achkopt[u]
def

= max�N
⌊⌊u⌉�N

, u ∈ VC (7)

Because N(V, �N) is a forest, (⌊⌊u⌉�N
, �N) is a chain. Hence, max�N

is well-
defined.

Example 12. Consider the FM program P1 from Example 3, whose graph
G1(V, ) is in Fig. 1 and nesting relation N1(V, �N) is in Example 5. Sup-
pose that VC = {4, 9}. Achkopt[4] = max�N

{4, 3} = 3 and Achkopt[9] =
max�N

{9} = 9. �

3.3 Declarative Specification of Dpost
ℓ
opt

v ∈ Dpost
ℓ[u] implies that Post[u] can be deallocated at v because it is recom-

puted and overwritten in the loop of a repeat instruction before a subsequent
use of Post[u].

Dpost
ℓ
opt[u] must be a subset of ⌊⌊u⌉�N

: only the instructions of the heads
of components that contain v recompute Post[u]. We can further rule out
the instruction of the heads of components that contain Dpostopt[u], because

Inst[Dpostopt[u]] deletes Post[u]. We add back Dpostopt[u] to Dpost
ℓ
opt

when u is contained in Dpostopt[u], because deallocation by Dpostopt happens

after the deallocation by Dpost
ℓ
opt.

Given a nesting relation N(V, �N) for the graph G(V, ), Dpost
ℓ
opt is

defined as:

Dpost
ℓ
opt[u]

def

= (⌊⌊u⌉�N
\ ⌊⌊d⌉�N

) ∪ (u �N d ? {d} : ∅) , u ∈ V (8)
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where d = Dpostopt[u] as defined in Eq. 6, and (b ? x : y) is the ternary condi-
tional choice operator.

Example 13. Consider the FM program P1 from Example 3, whose graph
G1(V, ) is in Fig. 1, nesting relation N1(V, �N) is in Example 5, and Dpostopt

is in Example 10.

Dpost
ℓ
opt[1] = {1}, Dpost

ℓ
opt[2] = {2}, Dpost

ℓ
opt[3] = {3},

Dpost
ℓ
opt[4] = {4}, Dpost

ℓ
opt[5] = {3, 4, 5}, Dpost

ℓ
opt[6] = {3, 6},

Dpost
ℓ
opt[7] = {7}, Dpost

ℓ
opt[8] = {7, 8}, Dpost

ℓ
opt[9] = {9}.

For 7, Dpostopt[7] = 9. Because 7 6�N 9, Dpost
ℓ
opt[7] = ⌊⌊7⌉�N

\ ⌊⌊9⌉�N
=

{7}. Therefore, Post[7] is deleted in each iteration of the loop of Inst[7]. While
Inst[9] reads Post[7] in the future, the particular values of Post[7] that are
deleted by Dpost

ℓ
opt[7] are not used in Inst[9]. For 5, Dpostopt[5] = 3. Because

5 �N 3, Dpost
ℓ
opt[5] = ⌊⌊5⌉�N

\ ⌊⌊3⌉�N
∪ {3} = {5, 4, 3}. �

3.4 Declarative Specification of Dpre
ℓ
opt

v ∈ Dpre
ℓ[u] implies that Pre[u] can be deallocated at v because it is recom-

puted and overwritten in the loop of a repeat instruction before a subsequent
use of Pre[u].

Dpre
ℓ
opt[u] must be a subset of ⌊⌊u⌉�N

: only the instructions of the heads of
components that contain v recompute Pre[u]. If Inst[u] is a repeat instruction,
Pre[u] is required to perform widening. Therefore, u must not be contained in
Dpre

ℓ
opt[u].

Example 14. Consider the FM program P1 from Example 3. Let VC = {4, 9}.
A memory configuration with Dpre

ℓ[4] = {3, 4} is not valid, because Inst[4]
would read ⊥ as the value of Post[4] when performing widening. �

Given a nesting relation N(V, �N) for the graph G(V, ), Dpre
ℓ
opt is defined

as:
Dpre

ℓ
opt[u]

def

= ⌊⌊u⌉�N
\ {u} , u ∈ VC (9)

Example 15. Consider the FM program P1 from Example 3, whose graph
G1(V, ) is in Fig. 1 and nesting relation N1(V, �N) is in Example 5. Let
VC = {4, 9}. Dpre

ℓ
opt[4] = {4, 3} \ {4} = {3} and Dpre

ℓ
opt[9] = {9} \ {9} = ∅.

Therefore, Pre[4] is deleted in each loop iteration of Inst[3]. �

The following theorem is proved in Appendix A.2:

Theorem 1. The memory configuration Mopt(Dpostopt, Achkopt,

Dpost
ℓ
opt, Dpre

ℓ
opt) is optimal.
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Algorithm 1: GenerateFMProgram(G)

Input: Directed graph G(V, )

Output: FM program pgm, Mopt(Dpostopt, Achkopt, Dpost
ℓ
opt, Dpre

ℓ
opt)

1 D := DepthFirstForest(G)
2 B := back edges in D
3 CF := cross & forward edges in D

4
′ := \ B

5 for v ∈ V do rep(v) := v; R[v] := ∅
6 P := ∅
7 removeAllCrossFwdEdges()
8 for h ∈ V in descending DFND do

9 restoreCrossFwdEdges(h)
10 generateFMInstruction(h)

11 pgm := connectFMInstructions()
12 return pgm, Mopt

13 def removeAllCrossFwdEdges():
14 for (u, v) ∈ CF do

15
′ := ′ \ {(u, v)}

⊲ Lowest common ancestor.
16 R[lcaD(u, v)] := R[lcaD(u, v)] ∪ {(u, v)}

17 def restoreCrossFwdEdges(h):
18

′ := ′ ∪ {(u, rep(v)) | (u, v) ∈ R[h]}

19 def findNestedSCCs(h):
20 Bh := {rep(p) | (p, h) ∈ B}

21 Nh := ∅ ⊲ Nested SCCs except h.

22 W := Bh \ {h} ⊲ Worklist.
23 while there exists v ∈ W do

24 W, Nh := W \ {v}, Nh ∪ [v]

25 for u s.t. u ′ v do

26 if rep(u) /∈ Nh ∪ {h} ∪ W then

27 W := W ∪ {rep(u)}

28 return Nh, Bh

29 def generateFMInstruction(h):
30 Nh, Bh := findNestedSCCs(h)
31 if Bh = ∅ then

32 Inst[h] := exec h
33 return

34 for v ∈ Nh in desc. postDFND do

35 Inst[h] := Inst[h] # Inst[v]

⋆36 for u s.t. u ′ v do

⋆37 Dpostopt[u] := v
⋆38 T[u] := rep(u)

39 Inst[h] := repeat h [Inst[h]]
⋆40 for u s.t. u B h do

⋆41 Dpostopt[u] := T[u] := h

42 for v ∈ Nh do

43 merge(v, h); P := P ∪ {(v, h)}

44 def connectFMInstructions():

45 pgm := ǫ ⊲ Empty program.
46 for v ∈ V in desc. postDFND do

47 if rep(v) = v then

48 pgm := pgm # Inst[v]

⋆49 for u s.t. u ′ v do

⋆50 Dpostopt[u] := v
⋆51 T[u] := rep(u)

⋆52 if v ∈ VC then

⋆53 Achkopt[v] := rep(v)

⋆54 Dpre
ℓ
opt[v] := ⌊⌊v, rep(v)⌉⌉P∗ \ {v}

⋆55 for v ∈ V do

⋆56 Dpost
ℓ
opt[v] := ⌊⌊v, T [v]⌉⌉P∗

57 return pgm

4 Efficient Algorithm to Compute Mopt

Algorithm GenerateFMProgram (Algorithm 1) is an almost-linear time algorithm
for computing an FM program P and optimal memory configuration Mopt for a
given directed graph G(V, ). Algorithm 1 adapts the bottom-up WTO con-
struction algorithm presented in Kim et al. [26]. In particular, Algorithm 1
applies the genProg rules (Eq. 3) to generate the FM program from a WTO. Line
32 generates exec instructions for non-heads. Line 39 generates repeat instruc-
tions for heads, with their bodies ([ ]) generated on Line 35. Finally, instructions
are merged on Line 48 to construct the final output P .

Algorithm GenerateFMProgram utilizes a disjoint-set data structure. Opera-
tion rep(v) returns the representative of the set that contains v. In Line 5, the
sets are initialized to be rep(v) = v for all v ∈ V . Operation merge(v, h) on Line
43 merges the sets containing v and h, and assigns h to be the representative
for the combined set. lcaD(u, v) is the lowest common ancestor of u, v in the
depth-first forest D [47]. Cross and forward edges are initially removed from ′
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on Line 7, making the graph (V, ′ ∪ B) reducible. Restoring it on Line 9 when
h = lcaD(u, v) restores some reachability while keeping (V, ′ ∪ B) reducible.

Lines indicated by ⋆ in Algorithm 1 compute Mopt. Lines 37, 41, and 50
compute Dpostopt. Due to the specific order in which the algorithm traverses
G, Dpostopt[u] is overwritten with greater values (as per the total order ≤) on
these lines, making the final value to be the maximum among the successors.
Lift is implicitly applied when restoring the edges in restoreCrossFwdEdges:
edge u v whose Lift(u, v) = h is replaced to u ′ h on Line 9.

Dpost
ℓ
opt is computed using an auxiliary map T : V → V and a relation

P : V ×V . At the end of the algorithm, T[u] will be the maximum element (as per
�N) in Dpost

ℓ
opt[u]. That is, T[u] = max�N

((⌊⌊u⌉�N
\⌊⌊d⌉�N

)∪(u �N d ? {d} : ∅)),
where d = Dpostopt[u]. Once T[u] is computed by lines 38, 41, and 51, the

transitive reduction of �N, P, is used to find all elements of Dpost
ℓ
opt[u] on

Line 56. P is computed on Line 43. Note that P∗ =�N and ⌊⌊x, y⌉⌉P∗

def

= {v |
x P∗v∧v P∗y}. Achk and Dpre

ℓ are computed on Lines 53 and 54, respectively.
An example run of the algorithm on graph G1 can be found in the extended
version of this paper [27].

The proofs of the following theorems are in Appendix A.3:

Theorem 2. GenerateFMProgram correctly computes Mopt, defined in Sect. 3.

Theorem 3. Running time of GenerateFMProgram is almost-linear.

5 Implementation

We have implemented our approach in a tool called Mikos, which extends
NASA’s IKOS [11], a WTO-based abstract-interpreter for C/C++. Mikos

inherits all abstract domains and widening-narrowing strategies from IKOS. It
includes the localized narrowing strategy [1] that intertwines the increasing and
decreasing sequences.

Abstract Domains in IKOS. IKOS uses the state-of-the-art implementations
of abstract domains comparable to those used in industrial abstract interpreters
such as Astrée. In particular, IKOS implements the interval abstract domain [14]
using functional data-structures based on Patricia Trees [35]. Astrée imple-
ments intervals using OCaml’s map data structure that uses balanced trees [8,
Section 6.2]. As shown in [35, Section 5], the Patricia Trees used by IKOS are
more efficient when you have to merge data structures, which is required often
during abstract interpretation. Also, IKOS uses memory-efficient variable pack-
ing Difference Bound Matrix (DBM) relational abstract domain [17], similar to
the variable packing relational domains employed by Astrée [5, Section 3.3.2].

Interprocedural Analysis in IKOS. IKOS implements context-sensitive
interprocedural analysis by means of dynamic inlining, much like the semantic
expansion of function bodies in Astrée [15, Section 5]: at a function call, formal
and actual parameters are matched, the callee is analyzed, and the return value
at the call site is updated after the callee returns; a function pointer is resolved
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to a set of callees and the results for each call are joined; IKOS returns top for a
callee when a cycle is found in this dynamic call chain. To prevent running the
entire interprocedural analysis again at the assertion checking phase, invariants
at exits of the callees are additionally cached during the fixpoint computation.

Interprocedural Extension of Mikos. Although the description of our iter-
ation strategy focused on intraprocedural analysis, it can be extended to inter-
procedural analysis as follows. Suppose there is a call to function f1 from a basic
block contained in component C. Any checks in this call to f1 must be deferred
until we know that the component C has stabilized. Furthermore, if function
f1 calls the function f2, then the checks in f2 must also be deferred until C
converges. In general, checks corresponding to a function call f must be deferred
until the maximal component containing the call is stabilized.

When the analysis of callee returns in Mikos, only Pre values for the
deferred checks remain. They are deallocated when the checks are performed
or when the component containing the call is reiterated.

6 Experimental Evaluation

The experiments in this section were designed to answer the following questions:

RQ0 [Accuracy] Does Mikos (Sect. 5) have the same analysis results as IKOS?
RQ1 [Memory footprint] How does the memory footprint of Mikos compare

to that of IKOS?
RQ2 [Runtime] How does the runtime of Mikos compare to that of IKOS?

Experimental Setup. All experiments were run on Amazon EC2 r5.2 × large
instances (64 GiB memory, 8 vCPUs, 4 physical cores), which use Intel Xeon
Platinum 8175M processors. Processors have L1, L2, and L3 caches of sizes 1.5
MiB (data: 0.75 MiB, instruction: 0.75 MiB), 24 MiB, and 33 MiB, respectively.
Linux kernel version 4.15.0-1051-aws was used, and gcc 7.4.0 was used to compile
both Mikos and IKOS. Dedicated EC2 instances and BenchExec [7] were used
to improve reliability of the results. Time and space limit were set to an hour and
64 GB, respectively. The experiments can be reproduced using https://github.
com/95616ARG/mikos_sas2020. Further experimental data can be found in the
extended version of this paper [27].

Benchmarks. We evaluated Mikos on two tasks that represent different
client applications of abstract interpretation, each using different benchmarks
described in Sects. 6.1 and 6.2. In both tasks, we excluded benchmarks that did
not complete in both IKOS and Mikos given the time and space budget. There
were no benchmarks for which IKOS succeeded but Mikos failed to complete.
Benchmarks for which IKOS took less than 5 s were also excluded. Measure-
ments for benchmarks that took less than 5 s are summarized in Appendix B of
our extended paper [27].

https://github.com/95616ARG/mikos_sas2020
https://github.com/95616ARG/mikos_sas2020
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Metrics. To answer RQ1, we define and use memory reduction ratio (MRR):

MRR
def

= Memory footprint of Mikos / Memory footprint of IKOS (10)

The smaller the MRR, the greater reduction in peak-memory usage in Mikos.
If MRR is less than 1, Mikos has smaller memory footprint than IKOS.

For RQ2, we report the speedup, which is defined as below:

Speedup
def

= Runtime of IKOS / Runtime of Mikos (11)

The larger the speedup, the greater reduction in runtime in Mikos. If speedup
is greater than 1, Mikos is faster than IKOS.

RQ0: Accuracy of Mikos. As a sanity check for our theoretical results, we
experimentally validated Theorem 1 by comparing the analysis results reported
by IKOS and Mikos. Mikos used a valid memory configuration, reporting the
same analysis results as IKOS. Recall that Theorem 1 also proves that the fix-
point computation in Mikos is memory-optimal (, it results in minimum memory
footprint).

6.1 Task T1: Verifying User-Provided Assertions

Fig. 3. Task T1. Log-log scatter plots of (a) memory footprint and (b) runtime of
IKOS and Mikos, with an hour timeout and 64 GB spaceout. Benchmarks that did
not complete in IKOS are marked ×. All ×s completed in Mikos. Benchmarks below
y = x required less memory or runtime in Mikos.

Benchmarks. For Task T1, we selected all 2928 benchmarks from DeviceDriver-
sLinux64, ControlFlow, and Loops categories of SV-COMP 2019 [6]. These cat-
egories are well suited for numerical analysis, and have been used in recent
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works [26,45,46]. From these benchmarks, we removed 435 benchmarks that
timed out in both Mikos and IKOS, and 1709 benchmarks that took less than
5 s in IKOS. That left us with 784 SV-COMP 2019 benchmarks.

Abstract Domain. Task T1 used the reduced product of Difference Bound
Matrix (DBM) with variable packing [17] and congruence [20]. This domain is
much richer and more expressive than the interval domain used in task T2.

Task. Task T1 consists of using the results of interprocedural fixpoint compu-
tation to prove user-provided assertions in the SV-COMP benchmarks. Each
benchmark typically has one assertion to prove.

RQ1: Memory footprint of Mikos compared to IKOS. Figure 3(a) shows
the measured memory footprints in a log-log scatter plot. For Task T1, the MRR
(Eq. 10) ranged from 0.895 to 0.001. That is, the memory footprint decreased to
0.1% in the best case. For all benchmarks, Mikos had smaller memory footprint
than IKOS: MRR was less than 1 for all benchmarks, with all points below the
y = x line in Fig. 3(a). On average, Mikos required only 4.1% of the memory
required by IKOS, with an MRR 0.041 as the geometric mean.

As Fig. 3(a) shows, reduction in memory tended to be greater as the memory
footprint in the baseline IKOS grew. For the top 25% benchmarks with largest
memory footprint in IKOS, the geometric mean of MRRs was 0.009. While a
similar trend was observed in task T2, the trend was significantly stronger in
task T1. Our extended paper has more detailed numbers [27].

RQ2: Runtime of Mikos compared to IKOS. Figure 3(b) shows the mea-
sured runtime in a log-log scatter plot. We measured both the speedup (Eq. 11)
and the difference in the runtimes. For fair comparison, we excluded 29 bench-
marks that did not complete in IKOS. This left us with 755 SV-COMP 2019
benchmarks. Out of these 755 benchmarks, 740 benchmarks had speedup > 1.
The speedup ranged from 0.87× to 1.80×, with geometric mean of 1.29×. The
difference in runtimes (runtime of IKOS − runtime of Mikos) ranged from
−7.47 s to 1160.04 s, with arithmetic mean of 96.90 s. Our extended paper has
more detailed numbers [27].

6.2 Task T2: Proving Absence of Buffer Overflows

Benchmarks. For Task T2, we selected all 1503 programs from the official
Arch Linux core packages that are primarily written in C and whose LLVM
bitcodes are obtainable by gllvm [19]. These include, but are not limited to,
coreutils, dhcp, gnupg, inetutils, iproute, nmap, openssh, vim, etc. From
these benchmarks, we removed 76 benchmarks that timed out and 8 benchmarks
that spaced out in both Mikos and IKOS. Also, 994 benchmarks that took less
than 5 s in IKOS were removed. That left us with 426 open-source benchmarks.

Abstract Domain. Task T2 used the interval abstract domain [14]. Using a
richer domain like DBM caused IKOS and Mikos to timeout on most bench-
marks.
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Fig. 4. Task T2. Log-log scatter plots of (a) memory footprint and (b) runtime of
IKOS and Mikos, with an hour timeout and 64 GB spaceout. Benchmarks that did
not complete in IKOS are marked ×. All ×s completed in Mikos. Benchmarks below
y = x required less memory or runtime in Mikos.

Task. Task T2 consists of using the results of interprocedural fixpoint compu-
tation to prove the safety of buffer accesses. In this task, most program points
had checks.

RQ1: Memory footprint of Mikos compared to IKOS. Figure 4(a) shows
the measured memory footprints in a log-log scatter plot. For Task T2, MRR
(Eq. 10) ranged from 0.998 to 0.022. That is, the memory footprint decreased to
2.2% in the best case. For all benchmarks, Mikos had smaller memory footprint
than IKOS: MRR was less than 1 for all benchmarks, with all points below the
y = x line in Fig. 4(a). On average, Mikos’s memory footprint was less than
half of that of IKOS, with an MRR 0.437 as the geometric mean. Our extended
paper has more detailed numbers [27].

RQ2: Runtime of Mikos compared to IKOS. Figure 4(b) shows the mea-
sured runtime in a log-log scatter plot. We measured both the speedup (Eq. 11)
and the difference in the runtimes. For fair comparison, we excluded 1 benchmark
that did not complete in IKOS. This left us with 425 open-source benchmarks.
Out of these 425 benchmarks, 331 benchmarks had speedup > 1. The speedup
ranged from 0.88× to 2.83×, with geometric mean of 1.08×. The difference in
runtimes (runtime of IKOS − runtime of Mikos) ranged from −409.74 s to
198.39 s, with arithmetic mean of 1.29 s. Our extended paper has more detailed
numbers [27].
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7 Related Work

Abstract interpretation has a long history of designing time and memory efficient
algorithms for specific abstract domains, which exploit variable packing and clus-
tering and sparse constraints [13,18,22,24,43–46]. Often these techniques rep-
resent a trade-off between precision and performance of the analysis. Nonethe-
less, such techniques are orthogonal to the abstract-domain agnostic approach
discussed in this paper. Approaches for improving precision via sophisticated
widening and narrowing strategies [2,3,21] are also orthogonal to our memory-
efficient iteration strategy. Mikos inherits the interleaved widening-narrowing
strategy implemented in the baseline IKOS abstract interpreter.

As noted in Sect. 1, Bourdoncle’s approach [10] is used in many industrial
and academic abstract interpreters [11,12,16,32,48]. Thus, improving memory
efficiency of WTO-based exploration is of great applicability to real-world static
analysis. Astrée is one of the few, if not only, industrial abstract interpreters
that does not use WTO exploration, because it assumes that programs do not
have gotos and recursion [8, Section 2.1], and is targeted towards a specific class
of embedded C code [5, Section 3.2]. Such restrictions makes is easier to com-
pute when an abstract value will not be used anymore by naturally following
the abstract syntax tree [29, Section 3.4.3]. In contrast, Mikos works for gen-
eral programs with goto and recursion, which requires the use of WTO-based
exploration.

Generic fixpoint-computation approaches for improving running time of
abstract interpretation have also been explored [26,30,52]. Most recently, Kim
et al. [26] present the notion of weak partial order (WPO), which generalizes
the notion of WTO that is used in this paper. Kim et al. describe a parallel
fixpoint algorithm that exploits maximal parallelism while computing the same
fixpoint as the WTO-based algorithm. Reasoning about correctness of concur-
rent algorithms is complex; hence, we decided to investigate an optimal memory
management scheme in the sequential setting first. However, we believe it would
be possible to extend our WTO-based result to one that uses WPO.

The nesting relation described in Sect. 3 is closely related to the notion
of Loop Nesting Forest [36,37], as observed in Kim et al. [26]. The almost-
linear time algorithm GenerateFMProgram is an adaptation of LNF construc-
tion algorithm by Ramalingam [36]. The Lift operation in Sect. 3 is similar
to the outermost-loop-excluding (OLE) operator introduced by Rastello [38,
Section 2.4.4].

Seidl et al. [42] present time and space improvements to a generic fixpoint
solver, which is closest in spirit to the problem discussed in this paper. For
improving space efficiency, their approach recomputes values during fixpoint
computation, and does not prove optimality, unlike our approach. However, the
setting discussed in their work is also more generic compared to ours; we assume
a static dependency graph for the equation system.

Abstract interpreters such as Astrée [8] and CodeHawk [48] are implemented
in OCaml, which provides a garbage collector. However, merely using a refer-
ence counting garbage collector will not reduce peak memory usage of fixpoint
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computation. For instance, the reference count of Pre[u] can be decreased to
zero only after the final check/assert that uses Pre[u]. If the checks are all con-
ducted at the end of the analysis (as is currently done in prior tools), then using
a reference counting garbage collector will not reduce peak memory usage. In
contrast, our approach lifts the checks as early as possible enabling the analysis
to free the abstract values as early as possible.

Symbolic approaches for applying abstract transformers during fixpoint com-
putation [23,28,40,41,49–51] allow the entire loop body to be encoded as a single
formula. This might appear to obviate the need for Pre and Post values for
individual basic blocks within the loop; by storing the Pre value only at the
header, such a symbolic approach might appear to reduce the memory footprint.
First, this scenario does not account for the fact that Pre values need to be
computed and stored if basic blocks in the loop have checks. Note that if there
are no checks within the loop body, then our approach would also only store the
Pre value at the loop header. Second, such symbolic approaches only perform
intraprocedural analysis [23]; additional abstract values would need to be stored
depending on how function calls are handled in interprocedural analysis. Third,
due to the use of SMT solvers in such symbolic approaches, the memory foot-
print might not necessarily reduce, but might increase if one takes into account
the memory used by the SMT solver.

Sparse analysis [33,34] and database-backed analysis [54] improve the mem-
ory cost of static analysis. For specific classes of static analysis such as the IFDS
framework [39], there have been approaches for improving the time and memory
efficiency [9,31,53,55].

8 Conclusion

This paper presented an approach for memory-efficient abstract interpretation
that is agnostic to the abstract domain used. Our approach is memory-optimal
and produces the same result as Bourdoncle’s approach without sacrificing time
efficiency. We extended the notion of iteration strategy to intelligently deallocate
abstract values and perform assertion checks during fixpoint computation. We
provided an almost-linear time algorithm that constructs this iteration strat-
egy. We implemented our approach in a tool called Mikos, which extended the
abstract interpreter IKOS. Despite the use of state-of-the-art implementation of
abstract domains, IKOS had a large memory footprint on two analysis tasks.
Mikos was shown to effectively reduce it. When verifying user-provided asser-
tions in SV-COMP 2019 benchmarks, Mikos showed a decrease in peak-memory
usage to 4.07% (24.57×) on average compared to IKOS. When performing inter-
procedural buffer-overflow analysis of open-source programs, Mikos showed a
decrease in peak-memory usage to 43.7% (2.29×) on average compared to IKOS.



Memory-Efficient Fixpoint Computation 55

A Proofs

This section provides proofs of theorems presented in the paper.

A.1 Nesting forest (V, �N) and total order (V, ≤) in Sect. 3

This section presents the theorems and proofs about �N and ≤ defined in Sect. 3.
A partial order (S, R) is a forest if for all x ∈ S, (⌊⌊x⌉R, R) is a chain, where

⌊⌊x⌉R

def

= {y ∈ S | x R y}.

Theorem 4. (V, �N) is a forest.

Proof. First, we show that (V, �N) is a partial order. Let x, y, z be a vertex in
V .

– Reflexivity: x �N x. This is true by the definition of �N.
– Transitivity: x �N y and y �N z implies x �N z. (i) If x = y, x �N z.

(ii) Otherwise, by definition of �N, y ∈ ω(x). Furthermore, (ii-1) if y = z,
z ∈ ω(x); and hence, x �N z. (ii-2) Otherwise, z ∈ ω(y), and by definition of
HTO, z ∈ ω(x).

– Anti-symmetry: x �N y and y �N x implies x = y. Suppose x 6= y. By
definition of �N and premises, y ∈ ω(x) and x ∈ ω(y). Then, by definition of
HTO, x ≺ y and y ≺ x. This contradicts that � is a total order.

Next, we show that the partial order is a forest. Suppose there exists v ∈ V
such that (⌊⌊v⌉�N

, �N) is not a chain. That is, there exists x, y ∈ ⌊⌊v⌉�N
such that

x 6�N y and y 6�N x. Then, by definition of HTO, C(x) ∩ C(y) = ∅. However, this
contradicts that v ∈ C(x) and v ∈ C(y). ⊓⊔

Theorem 5. (V, ≤) is a total order.

Proof. We prove the properties of a total order. Let x, y, z be a vertex in V .

– Connexity: x ≤ y or y ≤ x. This follows from the connexity of the total
order �.

– Transitivity: x ≤ y and y ≤ z implies x ≤ z. (i) Suppose x �N y. (i-1) If
y �N z, by transitivity of �N, x �N z. (ii-2) Otherwise, z 6�N y and y � z.
It cannot be z �N x because transitivity of �N implies z �N y, which is
a contradiction. Furthermore, it cannot be z ≺ x because y � z ≺ x and
x �N y implies y ∈ ω(z) by the definition of HTO. By connexity of �, x � z.
(ii) Otherwise y 6�N x and x � y. (ii-1) If y �N z, z 6�N x because, otherwise,
transitivity of �N will imply y �N x. By connexity of �, it is either x � z or
z ≺ x. If x � z, x ≤ z. If z ≺ x, by definition of HTO, z ∈ ω(z).

– Anti-symmetry: x ≤ y and y ≤ x implies x = y. (i) If x �N y, it should be
y �N x for y ≤ x to be true. By anti-symmetry of �N, x = y. (ii) Otherwise,
y 6�N x and x � y. For y ≤ x to be true, x 6�N y and x � y. By anti-symmetry
of �, x = y.
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⊓⊔

Theorem 6. For u, v ∈ V , if Inst[v] reads Post[u], then u ≤ v.

Proof. By the definition of the mapping Inst, there must exists v′ ∈ V such
that u v′ and v′ �N v for Inst[v] to read Post[u]. By the definition of WTO,
it is either u ≺ v′ and v′ /∈ ω(u), or v′ � u and v′ ∈ ω(u). In both cases, u ≤ v′.
Because v′ �N v, and hence v′ ≤ v, u ≤ v. ⊓⊔

A.2 Optimality of Mopt in Sect. 3

This section presents the theorems and proofs about the optimality of Mopt

described in Sect. 3. The theorem is divided into optimality theorems of the
maps that constitute Mopt.

Given M(Dpost,Achk,Dpost
ℓ,Dpre

ℓ) and a map Dpost0, we use
M Dpost0 to denote the memory configuration (Dpost0, Achk, Dpost

ℓ,
Dpre

ℓ). Similarly, M Achk0 means (Dpost, Achk0, Dpost
ℓ, Dpre

ℓ), and
so on. For a given FM program P , each map X that constitutes a memory config-
uration is valid for P iff M X is valid for every valid memory configuration M.
Also, X is optimal for P iff M X is optimal for an optimal memory configura-
tion M.

Theorem 7. Dpostopt is valid. That is, given an FM program P and a valid
memory configuration M, JP KM Dpostopt

= JP KM.

Proof. Our approach does not change the iteration order and only changes where
the deallocations are performed. Therefore, it is sufficient to show that for all
u v, Post[u] is available whenever Inst[v] is executed.

Suppose that this is false: there exists an edge u v that violates it. Let
d be Dpostopt[u] computed by our approach. Then, the execution trace of P
has execution of Inst[v] after the deallocation of Post[u] in Inst[d], with no
execution of Inst[u] in between.

Because ≤ is a total order, it is either d < v or v ≤ d. It must be v ≤ d,
because d < v implies d < v ≤ Lift(u, v), which contradicts the definition of
Dpostopt[u]. Then, by definition of ≤, it is either v �N d or (d 6�N v) ∧ (v � d).
In both cases, the only way Inst[v] can be executed after Inst[d] is to have
another head h whose repeat instruction includes both Inst[d] and Inst[v].
That is, when d ≺N h and v ≺N h. By definition of WTO and u v, it is either
u ≺ v, or u �N v. It must be u ≺ v, because if u �N v, Inst[u] is part of Inst[v],
making Inst[u] to be executed before reading Post[u] in Inst[v]. Furthermore,
it must be u ≺ h, because if h � u, Inst[u] is executed before Inst[v] in each
iteration over C(h). However, that implies h ∈ (⌊⌊v⌉�N

\ ⌊⌊u⌉�N
), which combined

with d ≺N h, contradicts the definition of Dpostopt[u]. Therefore, no such edge
u v can exist and the theorem is true. ⊓⊔

Theorem 8. Dpostopt is optimal. That is, given an FM program P , memory
footprint of JP KM Dpostopt

is smaller than or equal to that of JP KM for all valid
memory configuration M.
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Proof. For Dpostopt to be optimal, deallocation of Post values must be
determined at earliest positions as possible with a valid memory configura-
tion M Dpostopt. That is, there should not exists u, b ∈ V such that if
d = Dpostopt[u], b 6= d, M (Dpostopt[u ← b]) is valid, and Inst[b] deletes
Post[u] earlier than Inst[d].

Suppose that this is false: such u, b exists. Let d be Dpostopt[u], computed
by our approach. Then it must be b < d for Inst[b] to be able to delete Post[u]
earlier than Inst[d]. Also, for all u v, it must be v ≤ b for Inst[v] to be
executed before deleting Post[u] in Inst[b].

By definition of Dpostopt, v ≤ d for all u v. Also, by Theorem 6, u ≤ v.
Hence, u ≤ d, making it either u �N d, or (d 6�N u) ∧ (u � d). If u �N d,
by definition of Lift, it must be u d. Therefore, it must be d ≤ b, which
contradicts that b < d. Alternative, if (d 6�N u) ∧ (u � d), there must exist
v ∈ V such that u v and Lift(u, v) = d. To satisfy v ≤ b, v �N d, and
b < d, it must be b �N d. However, this makes the analysis incorrect because
when stabilization check fails for C(d), Inst[v] gets executed again, attempting
to read Post[u] that is already deleted by Inst[b]. Therefore, no such u, b can
exist, and the theorem is true. ⊓⊔

Theorem 9. Achkopt is valid. That is, given an FM program P and a valid
memory configuration M, JP KM Achkopt

= JP KM

Proof. Let v = Achkopt[u]. If v is a head, by definition of Achkopt, C(v) is the
largest component that contains u. Therefore, once C(v) is stabilized, Inst[u]
can no longer be executed, and Pre[u] remains the same. If v is not a head,
then v = u. That is, there is no component that contains u. Therefore, Pre[u]
remains the same after the execution of Inst[u]. In both cases, the value passed
to Cku are the same as when using Achkdflt. ⊓⊔

Theorem 10. Achkopt is optimal. That is, given an FM program P , memory
footprint of JP KM Achkopt

is smaller than or equal to that of JP KM for all valid
memory configuration M.

Proof. Because Pre value is deleted right after its corresponding assertions are
checked, it is sufficient to show that assertion checks are placed at the earliest
positions with Achkopt.

Let v = Achkopt[u]. By definition of Achkopt, u �N v. For some b to perform
assertion checks of u earlier than v, it must satisfy b ≺N v. However, because
one cannot know in advance when a component of v would stabilize and when
Pre[u] would converge, the assertion checks of u cannot be performed in Inst[b].
Therefore, our approach puts the assertion checks at the earliest positions, and
it leads to the minimum memory footprint. ⊓⊔

Theorem 11. Dpost
ℓ
opt is valid. That is, given an FM program P and a valid

memory configuration M, JP KM Dpostℓ
opt

= JP KM.
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Proof. Again, our approach does not change the iteration order and only changes
where the deallocations are performed. Therefore, it is sufficient to show that
for all u v, Post[u] is available whenever Inst[v] is executed.

Suppose that this is false: there exists an edge u v that violates it. Let d′

be element in Dpost
ℓ
opt[u] that causes this violation. Then, the execution trace

of P has execution of Inst[v] after the deallocation of Post[u] in Inst[d′], with
no execution of Inst[u] in between. Because Post[u] is deleted inside the loop
of Inst[d′], Inst[v] must be nested in Inst[d′] or be executed after Inst[d′] to
be affected. That is, it must be either v �N d′ or d′ ≺ v. Also, because of how
Dpost

ℓ
opt[u] is computed, u �N d′.

First consider the case v �N d′. By definition of WTO and u v, it is
either u ≺ v or u �N v. In either case, Inst[u] gets executed before Inst[v]
reads Post[u]. Therefore, deallocation of Post[u] in Inst[d′] cannot cause the
violation.

Alternatively, consider d′ ≺ v and v 6�N d′. Because u �N d′, Post[u] is
generated in each iteration over C(d′), and the last iteration does not delete
Post[u]. Therefore, Post[u] will be available when executing Inst[v]. Therefore,
such u, d′ does not exists, and the theorem is true. ⊓⊔

Theorem 12. Dpost
ℓ
opt is optimal. That is, given an FM program P , memory

footprint of JP KM Dpostℓ
opt

is smaller than or equal to that of JP KM for all valid
memory configuration M.

Proof. Because one cannot know when a component would stabilize in advance,
the decision to delete intermediate Post[u] cannot be made earlier than the
stabilization check of a component that contains u. Our approach makes such
decisions in all relevant components that contains u.

If u �N d, Dpost
ℓ
opt[u] = ⌊⌊u⌉�N

∩ ⌊d⌉⌉�N
. Because Post[u] is deleted in

Inst[d], we do not have to consider components in ⌊⌊d⌉�N
\ {d}. Alternatively, if

u 6�N d, Dpost
ℓ
opt[u] = ⌊⌊u⌉�N

\ ⌊⌊d⌉�N
. Because Post[u] is deleted Inst[d], we

do not have to consider components in ⌊⌊u⌉�N
\ ⌊⌊d⌉�N

. Therefore, Dpost
ℓ
opt is

optimal. ⊓⊔

Theorem 13. Dpre
ℓ
opt is valid. That is, given an FM program P and a valid

memory configuration M, JP KM Dpreℓ
opt

= JP KM.

Proof. Pre[u] is only used in assertion checks and to perform widening in
Inst[u]. Because u is removed from Dpre

ℓ[u], the deletion does not affect widen-
ing.

For all v ∈ Dpre
ℓ[u], v �N Achkopt[u]. Because Pre[u] is not deleted when

C(v) is stabilized, Pre[u] will be available when performing assertion checks in
Inst[Achkopt[u]]. Therefore, Dpre

ℓ is valid. ⊓⊔

Theorem 14. Dpre
ℓ
opt is optimal. That is, given an FM program P , memory

footprint of JP KM Dpreℓ
opt

is smaller than or equal to that of JP KM for all valid
memory configuration M.
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Proof. Because one cannot know when a component would stabilize in advance,
the decision to delete intermediate Pre[u] cannot be made earlier than the sta-
bilization check of a component that contains u. Our approach makes such deci-
sions in all components that contains u. Therefore, Dpre

ℓ
opt is optimal. ⊓⊔

Theorem 1. The memory configuration Mopt(Dpostopt, Achkopt,

Dpost
ℓ
opt, Dpre

ℓ
opt) is optimal.

Proof. This follows from theorems Theorem 11 to 14. ⊓⊔

A.3 Correctness and efficiency of GenerateFMProgram in Sect. 4

This section presents the theorems and proofs about the correctness and effi-
ciency of GenerateFMProgram (Algorithm 1, Sect. 4).

Theorem 2. GenerateFMProgram correctly computes Mopt, defined in Sect. 3.

Proof. We show that each map is constructed correctly.

– Dpostopt: Let v′ be the value of Dpostopt[u] before overwritten in Line
50, 37, or 41. Descending post DFN ordering corresponds to a topological
sorting of the nested SCCs. Therefore, in Line 50 and 37, v′ ≺ v. Also,
because v �N h for all v ∈ Nh in Line 41, v′ �N v. In any case, v′ ≤ v.
Because rep(v) essentially performs Lift(u, v) when restoring the edges, the
final Dpostopt[u] is the maximum of the lifted successors, and the map is
correctly computed.

– Dpost
ℓ
opt: The correctness follows from the correctness of T. Because the

components are constructed bottom-up, rep(u) in Line 51 and 38 returns
max�N

(⌊⌊u⌉�N
\ ⌊⌊Dpostopt[u]⌉�N

). Also, N
∗ =�N. Thus, Dpost

ℓ
opt is cor-

rectly computed.
– Achkopt: At the end of the algorithm rep(v) is the head of maximal com-

ponent that contains v, or v itself when v is outside of any components.
Therefore, Achkopt is correctly computed.

– Dpre
ℓ
opt: Using the same reasoning as in Achkopt, and because N

∗ =�N,

Dpre
ℓ
opt is correctly computed.

⊓⊔

Theorem 3. Running time of GenerateFMProgram is almost-linear.

Proof. The base WTO-construction algorithm is almost-linear time [26]. The
starred lines in Algorithm 1 visit each edge and vertex once. Therefore, time
complexity still remains almost-linear time. ⊓⊔
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