
A Reinforcement Learning Based Network
Scheduler For Deadline-Driven Data Transfers

Dipak Ghosal1,2, Sambit Shukla1, Alex Sim2, Aditya V. Thakur1, and Kesheng Wu2

1University of California, Davis, CA, U.S.A.
{dghosal, sshukla, avthakur}@ucdavis.edu

2Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.
{dghosal, asim, kwu}@lbl.gov

Abstract—We consider a science network that runs applica-
tions requiring data transfers to be completed within a given
deadline. The underlying network is a software defined network
(SDN) that supports fine grain real-time network telemetry.
Deadline-aware data transfer requests are made to a centralized
network controller that schedules the flows by setting pacing
rates of the deadline flows. The goal of the scheduling algorithm
is to maximize the number of flows that meet the deadline while
maximizing the network utilization. In this paper, we develop
a Reinforcement Learning (RL) agent based network controller
and compare its performance with well-known heuristics. For a
network consisting of a single bottleneck link, we show that the
RL-agent based network controller performs as well as Earliest
Deadline First (EDF) in the underloaded case and better in
the overloaded case. We also show that the RL-agent performs
significantly better than an idealized TCP protocol in which the
bottleneck link capacity is equally shared among the competing
flows. We also study the sensitivity of the RL-agent controller
for some of the parameter settings.

Index Terms—Science workflows, Deadline-driven data trans-
fers, Software-defined Networking (SDN), Reinforcement Learn-
ing, Scheduling Heuristics, Earliest Deadline First (EDF), TCP

I. INTRODUCTION

Guaranteed delivery of large data sets within a pre-specified
deadline over wide-area networks is an important requirement
for many scientific workflows. For example, the Zwicky
Transient Facility [21], which is capable of finding transients
and variable stars an order of magnitude faster than the
previous generation of synoptic surveys, generates approx-
imately 1.3 GB of uncompressed data every 45 seconds.
This data is processed through multiple pipelines at different
networked [1] high-performance computing (HPC) nodes to
generate alerts. These alerts must be generated within a
deadline so that additional observations can be scheduled
during the same observation night. Consequently, data transfer
between nodes and the processing pipelines at the HPC nodes
must meet their deadlines. Deadlines for data transfers can
be achieved by setting up connections between nodes with
guaranteed bandwidth [3]. However, such an approach can
lead to poor utilization of network capacity, especially when

This work was supported by NSF Grant CNS-1528087 and the Office
of Advanced Scientific Computing Research, Office of Science, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

data generation is bursty. Consequently, an additional goal is
to ensure that the network utilization is maximized.

In this study, we consider a network that is equipped with
SDN switches/routers [1], and a central controller that can
change packet forwarding rules at the switches/routers based
on the network state. Thus, rate allocation and priority for
individual flows can be altered. We also assume that sources
can pace traffic and change the pacing rate quickly based on
commands from the central controller [19]. Furthermore, we
assume that changes in the pacing rate can be achieved without
incurring any Transmission Control Protocol (TCP) penalty
such as packet loss and poor throughput performance. There
have been a number of studies that address deadline-aware
scheduling of data transfers over SDN-enabled wide area
networks. These include B4 (Google) [11], SWAN and TEM-
PUS (Microsoft) [14], DNA/AMOEBA (AWS) [25], among
others. These studies target large inter-datacenter transfers in
the presence of background transfers. A common approach in
these studies is to formulate an optimization problem which
in most cases is computationally expensive. The goal then is
to develop heuristics that achieve good performance.

The general problem is to design a network controller that,
given the state of the network, determines the pacing rate
of the sources of the deadline-aware flows, the routes of the
deadline-aware flows, and the rate allocations of the non-
deadline flows such that the deadlines are met and the network
utilization is maximized. Similar problems, but without rout-
ing, have been extensively studied in scheduling malleable
jobs with deadlines on parallel processing systems [5], [9].
Another somewhat similar problem is in the domain of
transportation networks where the goal is to jointly optimize
traffic signal control and routing to maximize throughput and
minimize latency [6], [18]. The overall problem is a complex
optimization problem. Machine Learning (ML) in general, and
Reinforcement Learning (RL) in particular, have been applied
to similar resource management problems [10], [16]. However,
to the best of our knowledge there is no prior work related to
the application of RL to this networking problem.

Rather than naively applying a RL tool to the general
problem as stated above, we consider a simpler problem
to establish the advantages of an RL-based approach by
comparing with known heuristics. We consider a network

with one bottleneck link on which only deadline-driven data
transfer requests are made. We consider three heuristics for
sharing the bottleneck bandwidth among the competing flows:
(i) Earliest Deadline First (EDF), (ii) Equal Partition, and
(iii) Random. We implement an RL-agent controller and
compare its performance with that of these three heuristics.
As EDF is known to be optimal for the case of the single
bottleneck link [13], [17], [24] and Equal Partition is an
idealized version of TCP, a comparative evaluation provides
a good benchmark for the design of the RL-agent controller.

The following are the main contributions of this study:
1) We present a Reinforcement Learning (RL) based ap-

proach for scheduling deadline-aware network flows.
2) We show that even using a simple reward function, the

RL-based approach achieves performance comparable to
the (optimal) Earliest Deadline First (EDF) heuristic.

3) We also show that our proposed RL approach performs
better than an idealized TCP algorithm, which equally
shares the bottleneck bandwidth.

II. MOTIVATION

Scientific workflows are complex, often generating large
amounts of data that is processed in multiple stages by
high-performance computing (HPC) systems which are shared
among different applications. Data generated at remote lo-
cations is transferred between the source and HPC systems
using high-speed networks, that carry other background traf-
fic. Increasingly many of these scientific workflows require
processing to be completed within a deadline, which, in turn,
imposes deadline for the network data transfer [7]. A recent
example for deadline-aware data transfer occurred when the
LIGO [2] and Virgo [8] detectors observed a gravitational
wave signal associated with the merger of two neutron stars.
The merger, known as a kilonova, occurred in a galaxy 130
million light-years from Earth in the southern constellation
of Hydra. The data from this initial observation had to be
processed in a timely manner and sent to astronomers around
the world so that they could aim their instruments to the right
section of the sky to image the source of the signal [4]. Such
deadline transfers are also common in cloud services [14], [25]
where large inter-data center transfers must be made within
a deadline in the presence of interactive and delay-tolerant
background traffic.

We consider a science network that runs application requir-
ing deadline transfers [1], as shown in Figure 1. Deadline-
aware data transfer requests are made to a central network
controller that schedules the flows by setting pacing rates of
the deadline flows. The scheduler operates in a time slotted
manner where at the beginning of each time slot it determines
what will be the pacing rates of the flows for the next
scheduling interval. These are determined by a scheduling
algorithm which could be based on some heuristic or a
machine learning approach with the goal of maximizing the
number of flows that meet the deadline while maximizing
the network utilization. We assume that the underlying net-
work is a software defined network (SDN) that supports fine

R1 R2

S
1

S
2

S
3

S
N

D
1

D
2

D
3

D
N

Bottleneck

link of

capacity B

Gbps

Network controller

Receives request from sources. Receives network

state information. Determines and communicates

pacing rates to the sources.

Requests

Pacing rates to

sources Network state

Fig. 1. A simple dumbbell network. The access links from the sources
S1 . . . SN to router R1 and the links from router R2 to the destinations
D1 . . . DN have large capacities. Hence, the link between R1 and R2 is the
bottleneck link.

grain real-time network telemetry, which provides information
required for the scheduling algorithm. We will assume that
the source can precisely pace traffic at a rate directed by the
network controller.

III. THE MODEL

This study is based on a dumbbell network shown in
Figure 1. We consider N sources that share one bottleneck link
to N destinations. The rate of the bottleneck link is B Gbps.
The links from the sources S1 . . . SN to the router R1 and
from router R2 to the destinations D1 . . . DN have very high
capacities and hence are never the bottleneck.

We consider an episodic (batch) model in which the
scheduler receives a request from each of the sources at the
beginning of each episode. The episode ends when all the
requests have completed successfully (within the deadline) or
not, upon which a new episode begins. Each request j is a five-
tuple (sj , dj , fj , dj , vj) where sj denotes the source node, dj
the destination node, fj is the filesize, dj is the deadline, and
vj is a value that is attributed if the data transfer is completed
within the deadline. corresponds to a single TCP/IP packet
flow, identified by a flow-id. We assume only a single flow
from each source at any given time.

We consider a time-slotted system as shown in Figure 2.
The basic slot is a flow update interval Tfu. A fixed number of
flow-update intervals make up a scheduling interval Tsc. An
episode consists of a variable number of scheduling intervals.

1) Flow-update Interval: This is the basic time unit. The
purpose is to model progress of the flow as a consequence
of interference from other deadline and background
flows. If all traffic in the network are perfectly paced
deadline flows, as is the case in this study, then the
progress of a flow at the flow update interval is simply
determined by the pacing rate that is allocated to the
flows.

Start of

Episode i with

N requests

submitted

End of Episode i

and start of

Episode i+1 with

N new requests

submitted

Fixed time

scheduling

intervals

(Tsc)

First request

completes

Nth request

completes

Fixed number of flow

update intervals each of

duration Tfu

Fig. 2. The basic unit of timing is flow update interval Tfu. The scheduling
interval Tsc denotes time between when scheduling decisions are taken.

2) Scheduling Interval: This is when scheduling decisions
are taken and pacing rates are assigned to the flows.

3) Episode: This consists of a number of scheduling in-
tervals that are required for all the flows to complete,
whether meeting the deadline or not.

At the beginning of each scheduling interval, the network
controller assigns a pacing rate to each source which it
maintains for the duration of the interval. In this study, we
assume that these are only integer rates. Furthermore, we
assume that a flow could be paused for a given scheduling
interval by assigning pacing rate of 0.

A. Heuristic Scheduling Algorithms

We consider the following heuristics for comparison:
• Equal Partition (TCP): In this case the bottleneck

link capacity is “equally divided” among the competing
flows. Since we consider only integer pacing rates, for 3
active flows, 10 Gbps bandwidth is randomly divided into
one of {(4, 3, 3), (3, 4, 3), (3, 3, 4)}. This is an idealized
version of the TCP protocol in which flows with equal
round-trip times can be shown to equally share the
bottleneck link capacity [15].

• Random (RANDOM): In this scheme, the bottleneck
capacity is randomly partitioned among the active flows.
This is a baseline case for comparison only.

• Earliest Deadline First (EDF): This scheme allocates
all the capacity to the flow that has the earliest deadline.
EDF has been widely studied in scheduling deadline-
sensitive jobs on multi-processor systems. For a single
machine system, EDF has been proved be the opti-
mal policy [13], [24]. EDF has also been studied for
packet scheduling in multihop networks with hard dead-
lines [17]. It was known that for single hop system,
EDF has the same performance as the optimal offline
algorithm when the system is underloaded. For tree-based
multihop networks, EDF algorithm achieves the same
performance as the optimal offline algorithm [17]. Since
we consider a network with a single bottleneck link,

we use EDF as the benchmark for the best achievable
performance.

IV. REINFORCEMENT LEARNING (RL) AGENT BASED
NETWORK CONTROLLER

In reinforcement learning [22], the system is modeled as
a Markov Decision Process (MDP) consisting of a set of
states (S) and actions (A). A state is a snapshot of some
characteristic variables that define the system. An action
enables transition between system states. A learning agent
learns by associating appropriate rewards with every state-
action pair (Si, Aj). With an appropriate reward function,
the agent goes through a learning phase where it learns by
associating rewards to the different actions at a given state.
Below we describe these components for RL-Agent based
network controller.

A. States

For each request j, we define Rminj(t) as:

Rminj(t) =
remaining number of bytes

time until deadline
(1)

The value Rminj(t) denotes the minimum rate that is re-
quired at every subsequent scheduling interval for request j
to meet the deadline. We let Rminj(0) =

fj
dj

, the initial min-
imum rate for request j, be denoted by Rminj . In this paper,
the state of the system S = {n,Rmin1(t), . . . , Rminn(t), u},
where n is the number of active flows, Rmini(t) is as defined
above and u is the utilization of the bottleneck link. To
restrict the size of the state space we consider only integer
values of Rmini(t), i = 1, . . . , n. In the current study, for all
scheduling policies, the bottleneck capacity B is completely
allocated and consequently the utilization u is always 1.

B. Actions

The action consist of setting the pacing rates of the sources.
Thus, the action A = {a1, . . . , an}, where ai is the pacing
rate assigned to ith active flow. We assume integer rates, not
exceeding bottleneck capacity B.

C. Reward Function

A good reward function is crucial for designing an efficient
RL-agent. In our design, the reward function consists of two
parts: (1) a scheduling interval reward, and (2) a flow com-
pletion reward. The scheduling interval reward is assigned at
the end of each scheduling interval, while the flow completion
reward is assigned when a flow completes within the deadline.

1) Scheduling Interval Reward: For each scheduling inter-
val, a reward is assigned to the state-action pair. In this study,
we have considered the following reward functions:

(i) Scheduling Interval Reward Function 1 (SIRF1): Let
(Sj , Aj) be state action pair for the scheduling interval
j and let n be the number of active flows. In this reward
function, we attempt to mimic the EDF policy. Let
dremi denote remaining time until deadline for active
flow i. Let dremmax denote max of the remaining times
over all the active flows. Let ai denote the pacing rate

of the ith flow, then the scheduling interval reward SIR
for state action pair (Sj , Aj), SIR(Sj , Aj) is given by

SIR(Sj , Aj) =

n∑
i=1

(dremmax − dremi)× ai (2)

With this reward function, assigning all the capacity of
the bottleneck link to the flow with earliest deadline will
result in maximum reward.

(ii) Scheduling Interval Reward Function 2 (SIRF2): The
reward for flow i, denoted by rewardi, is given by

rewardi =

{
1 ai(t) ≥ Rmini(t)
−1 ai(t) < Rmini(t)

(3)

where ai is the pacing rate assigned to flow i. For a state
Sj and action Aj , the scheduling interval reward for the
jth interval SIR(Sj , Aj) =

∑n
i=1 rewardi, where n is

the number of active flows. In this reward function, an
action that assigns the required Rmin to more flows
receives a higher overall reward.

2) Flow Completion Reward: The flow completion re-
ward is assigned when a flow completes within the dead-
line. If (Si, Ai) is the state action pair that resulted
in the flow to be completed within the deadline and
{(S0, A0), (S1, A1), . . . (Si−1, Ai−1)} is the sequence of state
action pairs prior to (Si, Ai), then the flow completion reward
assigns each of these state action pairs a flow completion
reward RFC with an exponentially decaying discount factor
γ. Specifically, the flow completion reward for state action
pair (Sk, Ak), FCR(Sk, Ak) is given by

FCR(Sk, Ak) = RFC × γi−k (4)

D. Other Parameters

The following are a few other important parameters for the
RL-Agent based network controller.

a) New State Action Policy: In a new state where rewards
for all the actions are initialized to 0, the action can be chosen
randomly (RANDOM policy) or it can be chosen following
the Earliest Deadline First algorithm (EDF policy).

b) Exploration Probability (pexp): For a pre-visited
state, the action is chosen randomly from the set of all possible
actions with a probability pexp. The exploration probability is
high initially and decays hyper-exponentially to a minimum
value of 0.01. This decay is based on step size which is fixed
length of simulation time (100000 seconds) (approx. 32000
flows). The pexp(i) for the ith step is given by

pexp(i) = max(pexp(i− 1)i, 0.01) (5)

c) Learning Parameter (β): Q(Si, Ai) denotes the accu-
mulated reward for a given state action pair (Si, Ai). When
a new reward (SIR or FCR) is determined for a state action
pair, the value is updated as follows:

Q(Si, Ai) = β ∗Q(Si, Ai) + reward(SIR or FCR) (6)

V. RESULTS AND DISCUSSION

A. Simulation Model

We implemented a simulation model using SimPy which
provides a simple yet powerful platform for discrete event
simulation. The main approximation in the simulation pertains
to the data transfer between the nodes. In the real system, the
data transfer is performed using TCP which is a byte stream
protocol. The simulation is at the flow level. Requests consist
of transfer of files of a certain size with a given deadline. The
flows are completely malleable and the progress of a flow
is determined by the rate that is allocated to the flow. The
simulation model was used to implement all the heuristics as
well as the RL-agent based network controller. While there
are tools available for implementing RL-agents, in this study,
the RL-agent was implemented from scratch in SimPy. The
current study is based on a simple Q-learning agent and as
such was not difficult to implement.

As mentioned before, each episode consists of N requests,
one from each of the sources. Each request is destined to a
different destination. Recall that for request j, Rminj(0) =
fj
dj

is the minimum rate required at the beginning of the
episode for the request to meet the deadline. We define
Sum Rmin =

∑N
j=1Rminj(0) to be the sum of the Rmins

of all the flows at the beginning of the episode. If Sum Rmin
is less than the bottleneck link capacity B, then it is always
possible to meet the deadlines of the flows. This is the
underloaded case. If Sum Rmin is greater than B then it may
not be possible to meet the deadlines of all the flows. This is
the overloaded case. Experiments are conducted for different
values of Sum Rmin. Given a value of Sum Rmin, the
workload for each episode is generated as follows:

1) For each source i, a filesize fi is determined by sampling
from Unif(10, 50).

2) Sum Rmin is randomly partitioned among the N re-
quests, i.e. Rmin1, . . . , RminN . This study considers
only integer values of Sum Rmin.

3) The deadline of flow i, di = fi
Rmini

.

The RL-agent is trained separately for each Sum Rmin.
We assume that there is an RL-agent for each Sum Rmin. In
the real implementation, given the filesize fi and the deadline
di for each of the flow at beginning of the episode, we can
determine Sum Rmin based on which we can call the ap-
propriate RL-agent controller. Table I summarizes parameters
used in this study.

TABLE I
TYPICAL VALUES OF PARAMETERS USED IN THIS STUDY

Parameter Description Typical values

N Number of sources (and destination) 3
B Bottleneck bandwidth 10 Gbps
F File size (Gb) Unif(10, 50)
α Discount factor 0.95
β Learning rate 1.0

pexp Initial exploration probability 0.999

Fig. 3. The success ratio as a function of Sum Rmin for N = 3 sources
and B = 10 Gbps.

Fig. 4. The success ratio as a function of Sum Rmin for N = 5 sources
and B = 20 Gbps.

The metrics used for this study is the success ratio, which
is defined as the fraction of the number of requests that meet
the deadline. In the case of the RL-agent, the success ratio
is calculated over requests once the exploration probability
p has decayed to pmin (= 0.01). Requests prior to that are
considered to be in the learning phase.

B. Comparison with Heuristics

Figure 3 and Figure 4 show the comparison of performance
of our RL-agent with the three heuristics. In the first case
N = 3 and B = 10 Gbps, while in the second case N = 5 and
B = 20 Gbps. We observe that the RL-agent performs as well
as EDF. In fact, for the overloaded case i.e., Sum Rmin > B
it performs better than EDF. The improvement in the success
rate is higher for larger network. This is likely due to the sub-
optimality of EDF in the overloaded case which is more pro-
nounced with larger network. As expected, in both cases, TCP
performs poorly and becomes worse as the load increases. The
reason why the success rate is less than 100% for some of the
underloaded cases is that the flow can finish anytime within
the scheduling interval. However, new scheduling decisions

Fig. 5. The learning curve - the success ratio averaged over 500 flows
starting from the beginning for the two different new state action policy.
Sum Rmin = 8, N = 3, B = 10 Gbps.

are taken only at the end of a scheduling interval. Hence, there
is some bandwidth wastage which becomes more important
as Sum Rmin gets closer to B. Comparing Figure 3 and
Figure 4, it appears that for the overloaded case the difference
in the success ratio between the RL-agent and EDF increases
with larger network and higher B.

C. Impact of New State Action Policy

In a new state with the rewards of all possible actions
initialized to 0, the choice of the action can be based on
different heuristics. We compared the performance of choos-
ing an action following the EDF policy with the RANDOM
policy. Figure 5 shows the success rate averaged over 500
flows starting from the beginning of simulation. The plot also
shows the variation of the exploration probability pexp. First,
we observe that for the EDF policy, the success ratio first
decreases and then increases. This is because initially most of
the actions follow the EDF policy which is the optimal policy.
This benefit decreases due to the random choice among actions
which is often the case when the exploration probability is
high. When the exploration probability decreases resulting
in more exploitation, the success ratio increases. For the
RANDOM policy, the success ratio start at a lower value
and then increases when the exploration probability decreases.
Second, step increases in the success ratio corresponds large
decreases in the exploration probability. Finally, we observe
that the RANDOM policy appears to saturate at a lower value
than the EDF policy. The difference can be reduced by tuning
the RL agent parameters, particularly, the learning factor β.

D. Comparison of Reward Functions

We also compared the performance of the two differ-
ent scheduling interval reward functions described in Sec-
tion IV-C. The plot is not included due to space limitation. The
results showed that performance of SIRF1 is slightly better
than SIRF2. This is due to the fact that SIRF1 does a better
job in mimicking EDF.

VI. RELATED WORK

As mentioned in Section I, deadline-aware flow schedul-
ing has been investigated in the context of inter-datacenter
traffic [12], [14], [25]. CALIBERS [19] focuses on scientific
workflows and the study shows that simple dynamic pacing
algorithms that optimizes locally on the most bottleneck link
perform as well as more complex algorithms that attempt to
optimize globally. However, the study illustrated the com-
plexity of the scheduling problem and the results were not
compared with any benchmark. RL-agent based approaches
have been used in resource management problems. As men-
tioned in [16] decisions made by these systems are often
highly repetitive they provide the required training data for RL
algorithms. This is particularly the case for science workflows
such as the ZTF which often generate data periodically. Also,
as mentioned in [16], RL agents can be used optimize complex
objectives that are hard to model. Finding optimal policies for
deadline driven transfers is a complex problem with multihop
networks where contention can occur at multiple links [17].
Adding additional objectives such as routing and network
utilization makes the problem even more complex which can
be modeled using deep neural networks similar to game-
playing agents [20].

VII. CONCLUSIONS

In this paper, we implemented a Reinforcement Learning
(RL) agent based network controller to schedule deadline-
driven data transfers. For a single bottleneck link network,
we compare the performance of the RL agent with that of
known heuristics such as Earliest Deadline First (EDF), which
is known to be optimal, and Equal Partitioning, which is
an idealized version of TCP. The results show that the RL
agent achieves performance comparable to that of EDF, and
performs better for the overloaded scenario. The impact of the
various parameters of the RL agent suggests that it requires
careful tuning to achieve good performance. To scale the RL
agent to larger multihop networks, the tabular method can be
replaced by an approximation function trained online using a
deep neural network (DNN) [23]. The results of this paper
provide the necessary foundation to pursue such an approach
for a general network.

REFERENCES

[1] Energy sciences network (esnet). http://www.es.net/.
[2] Laser interferometer gravitational-wave observatory (ligo). https://www.

ligo.org.
[3] Oscars: On-demand secure circuits and advance reservation system.

http://www.es.net/oscars.
[4] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley,

C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Af-
feldt, M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal,
and et al. Multi-messenger observations of a binary neutron star merger.
The Astrophysical Journal Letters, 848(2):L12, 2017.

[5] T. E. Carroll and D. Grosu. Incentive compatible online scheduling
of malleable parallel jobs with individual deadlines. In 2010 39th
International Conference on Parallel Processing, pages 516–524, Sep.
2010.

[6] Huajun Chai, H Michael Zhang, Dipak Ghosal, and Chen-Nee Chuah.
Dynamic traffic routing in a network with adaptive signal control.
Transportation Research Part C: Emerging Technologies, 85:64–85,
2017.

[7] Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D Carothers,
Kerstin Kleese van Dam, Kenneth Moreland, Manish Parashar, Lavanya
Ramakrishnan, Michela Taufer, and Jeffrey Vetter. The future of
scientific workflows. The International Journal of High Performance
Computing Applications, 32(1):159–175, 2018.

[8] European Gravitational Observatory (EGO). Virgo detector. http://www.
virgo-gw.eu/.

[9] Dror G Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C
Sevcik, and Parkson Wong. Theory and practice in parallel job
scheduling. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 1–34. Springer, 1997.

[10] Robert Glaubius, Terry Tidwell, Christopher Gill, and William D
Smart. Real-time scheduling via reinforcement learning. arXiv preprint
arXiv:1203.3481, 2012.

[11] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, et al. B4: Experience with a globally-deployed software
defined wan. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 3–14. ACM, 2013.

[12] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj
Babbula. Calendaring for wide area networks. In ACM SIGCOMM
computer communication review, volume 44, pages 515–526. ACM,
2014.

[13] David Karger, Cliff Stein, and Joel Wein. Scheduling algorithms. CRC
Handbook of Computer Science, 1997.

[14] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn
Carlin, Mihai Amarandei-Stavila, et al. Bwe: Flexible, hierarchical
bandwidth allocation for wan distributed computing. In ACM SIG-
COMM Computer Communication Review, volume 45, pages 1–14.
ACM, 2015.

[15] James Kurose and Keith Ross. Computer networks: A top down
approach featuring the internet. Peorsoim Addison Wesley, 2016.

[16] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-
dula. Resource management with deep reinforcement learning. In
Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
pages 50–56. ACM, 2016.

[17] Zhoujia Mao, Can Emre Koksal, and Ness B Shroff. Optimal online
scheduling with arbitrary hard deadlines in multihop communication
networks. IEEE/ACM Transactions on Networking (TON), 24(1):177–
189, 2016.

[18] Markos Papageorgiou, Christina Diakaki, Vaya Dinopoulou, Apostolos
Kotsialos, and Yibing Wang. Review of road traffic control strategies.
Proceedings of the IEEE, 91(12):2043–2067, 2003.

[19] Eric Pouyoul, Mariam Kiran, Nathan Hanford, Dipak Ghosal, Fatemah
Alali, Raj Kettimuthu, and Ben Mackcrane. Calibers: A bandwidth cal-
endaring paradigm for science workflows. In INDIS Innovating the Net-
work for Data Intensive Science, 2017. https://scinet.supercomputing.
org/workshop/sites/default/files/Pouyoul-Calibers.pdf.

[20] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[21] Roger M Smith, Richard G Dekany, Christopher Bebek, Eric Bellm,
Khanh Bui, John Cromer, Paul Gardner, Matthew Hoff, Stephen Kaye,
Shrinivas Kulkarni, Andrew Lambert, Michael Levi, and Dan Reiley.
The Zwicky transient facility observing system. In Ground-based and
Airborne Instrumentation for Astronomy V, volume 9147. International
Society for Optics and Photonics, 2014.

[22] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[23] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[24] Xiaohu Wu and Patrick Loiseau. Algorithms for scheduling deadline-
sensitive malleable tasks. In 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 530–537.
IEEE, 2015.

[25] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang,
Haibing Guan, and Ming Zhang. Guaranteeing deadlines for inter-

data center transfers. IEEE/ACM Transactions on Networking (TON),
25(1):579–595, 2017.

