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Abstract
Developing a code optimizer is challenging, especially for
new, idiosyncratic ISAs. Superoptimization can, in princi-
ple, discover machine-specific optimizations automatically
by searching the space of all instruction sequences. If we
can increase the size of code fragments a superoptimizer can
optimize, we will be able to discover more optimizations.

We develop LENS, a search algorithm that increases the
size of code a superoptimizer can synthesize by rapidly prun-
ing away invalid candidate programs. Pruning is achieved
by selectively refining the abstraction under which candi-
dates are considered equivalent, only in the promising part
of the candidate space. LENS also uses a bidirectional search
strategy to prune the candidate space from both forward and
backward directions. These pruning strategies allow LENS
to solve twice as many benchmarks as existing enumerative
search algorithms, while LENS is about 11-times faster.

Additionally, we increase the effective size of the su-
peroptimized fragments by relaxing the correctness condi-
tion using contexts (surrounding code). Finally, we combine
LENS with complementary search techniques into a coop-
erative superoptimizer, which exploits the stochastic search
to make random jumps in a large candidate space, and a
symbolic (SAT-solver-based) search to synthesize arbitrary
constants. While existing superoptimizers consistently solve
9–16 out of 32 benchmarks, the cooperative superoptimizer
solves 29 benchmarks. It can synthesize code fragments that
are up to 82% faster than code generated by gcc -O3 from
WiBench and MiBench.

Categories and Subject Descriptors D.1.2 [Automatic
Programming]: Program Transformation; D.3.4 [Program-
ming Languages]: Processors-Optimization

Keywords Superoptimization, Program Synthesis, SMT
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1. Introduction
Code optimization is more important today than ever be-
fore. For example, CERN’s internal study demonstrated that
using a highly optimizing compiler with profile-guided op-
timizations increased the power efficiency of its data cen-
ter by 65% [15]. Another study shows that loop optimiza-
tions alone improved energy consumption of applications
running on battery-operated portable devices by up to 10
times [16]. Code optimizers may also reduce costs of devices
by enabling developers to select lower-power computing re-
sources and smaller memory [7].

Developing a code optimizer still remains a challenging
problem. The task of implementing a code optimizer is fur-
ther exacerbated by the development of different instruc-
tion set architectures (ISAs) for different types of proces-
sors. For example, ARM alone has over 30 variants of ISAs
[35], and new architectures are constantly being developed
[8, 10, 12, 19, 22, 29, 36]. Even when compiling for widely-
used architectures, like x86 or ARM, compilers may miss
some optimizations that human experts can recognize. Many
of these optimizations are local and very specific to the archi-
tectures. Although the expert developers can specify peep-
hole optimizations in the compilers to perform these local
rewrites, they may still miss some optimizations, and their
rewrite rules may be buggy [17].

Superoptimization, introduced by Massalin [18], is a pro-
gram optimization technique that searches for a correct and
optimal program given an optimality criterion, instead of re-
lying on rewrite rules. Thus, a superoptimizer can be used
for automatically generating peephole optimization rules for
compilers [5, 11] or optimizing small sequences of instruc-
tions produced by compilers on the fly [1, 24, 25]. With this
technique, we can avoid buggy human-written rewrite rules
and potentially discover even more optimizations. Note that
superoptimization subsumes instruction selection, instruc-
tion scheduling, and local register allocation. A superopti-
mizer is shown to optimize a complex multiplication kernel
and offer 60% speedup over an optimizing compiler [24].

Our aim is to develop a search technique that can synthe-
size optimal programs more consistently and faster than ex-
isting techniques. We experimented with the most common
superoptimization search techniques: symbolic (SAT-solver-



based) [27, 31], enumerative [5, 6, 9, 11, 18, 32, 34], and
stochastic [24, 25] search. A symbolic search could synthe-
size arbitrary constants, but it was the slowest. An enumera-
tive search synthesized relatively small programs the fastest,
but it could only synthesize up to three ARM instructions
within an hour. A sliding window decomposition [20] could
scale symbolic and enumerative search to larger programs,
but it does not guarantee the optimality of the final output
programs. A stochastic search could synthesize larger pro-
grams compared to symbolic and enumerative search, but it
sometimes could not find the optimal program. This is be-
cause a stochastic search can get stuck at local minima.

We develop LENS, an enumerative search algorithm that
rapidly prunes away invalid candidate programs. It employs
a bidirectional search to prune the search space from both
forward and backward directions. It also refines the abstrac-
tion under which candidates are considered equivalent selec-
tively via an incremental use of test cases. In our experiment,
these pruning techniques increase the number of benchmarks
the enumerative search can solve from 11 to 20 (out of 22)
and offer 11x reduction on the search time on average.

Although LENS performs better than the existing enu-
merative algorithms, it still cannot synthesize ARM code
with more than five instructions or GreenArrays (GA) [12]
code with more than 12 instructions. To scale this search al-
gorithm to synthesize larger code, we introduce a context-
aware window decomposition. With this decomposition, our
enumerative search can synthesize an optimal (or nearly op-
timal) ARM program of 16 instructions within 10 minutes.

Optimizing code may require creating new constants or
transforming the code fragment globally, which cannot be
achieved by the enumerative search with the window decom-
position. Thus, we compensate these limitations by combin-
ing stochastic and symbolic search into our superoptimizer,
yielding a cooperative superoptimizer.

Finally, we develop GREENTHUMB, a framework for
constructing superoptimizers for different architectures and
testing different search techniques. The framework nicely fa-
cilitates testing various search techniques against each other
and ensuring they work well for various ISAs. We instanti-
ate GREENTHUMB for two very different ISAs—ARM and
GA—for the testing purpose.

This paper makes the following contributions:

• the LENS algorithm, a bidirectional enumerative search
with selective refinement (Section 3)

• the context-aware window decomposition, which scales a
superoptimization technique that can optimize relatively
small programs to larger programs (Section 4)

• the cooperative superoptimizer, which exploits strengths
of different search techniques (Section 5)

• GREENTHUMB, a framework for constructing superopti-
mizers that provides efficient back-end search algorithms
and can be extended to new ISAs (Section 6)
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Figure 1. Interaction between the main components in our
superoptimizer

2. Overview and Insights
Figure 1 displays the interaction between the LENS algo-
rithm (Section 2.1), the context-aware window decomposi-
tion (Section 2.2), and the cooperation of multiple search in-
stances (Section 2.3), which can either employ LENS or dif-
ferent search techniques. The terminology used in this paper
is defined as follows.

• A program is a sequence of instructions without loops
and branches.

• A reference program is a program to be optimized.
• A program state contains values in the locations of inter-

est such as registers, stacks, and memory.
• A test input is a program state that is used for checking

correctness (being equivalent to a reference program).
• A test output is an expected program state after executing

a candidate program on a given test input. A pair of a test
input and a test input constitutes a test case.

• An equivalence verification is a process to verify if a
candidate program is equivalent to a reference program
on all inputs using a constraint solver.

2.1 Search Technique
A search technique searches for a program that is semanti-
cally equivalent to a reference program but faster according
to a given performance model. This section provides our in-
sights on how we design our search technique.

2.1.1 Problem Formulation
Let pspec be a program we want to optimize. The set of test
inputs I = (i1, ..., in) and test outputs O = (o1, ..., on)
can be generated. Each test case (ik, ok) is an input-output
pair such that pspec(ik) = ok. We formalize the super-
optimization problem as a graph search problem. A node
u in the graph represents a vector of n program states.
The initial node s represents I , and the goal node t rep-
resents O. There is an edge from node u—representing
program states (x1, ..., xn)—to node v—representing pro-
gram states (y1, ..., yn)—labeled with an instruction inst,
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Figure 2. Search graphs of ARM programs of length 4. In
(b) and (c), the highlighted paths are programs that pass the
test cases. Assume programs are executed on 4-bit machine.

if inst(u) = v, an abbreviation for
∧n

i=1 inst(xi) = yi. We
use u v to denote a set of all paths from u to v, which rep-
resents a set of instruction sequences. A program that passes
all n test cases corresponds to a path from s to t. Therefore,
the superoptimization problem reduces to searching for a
path p from s to t such that cost(p) < cost(pspec). We use
q ⊕ r to denote concatenation of programs q and r.
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Figure 3. Division of search space of length d programs.
Yellow boxes represent feasible equivalence classes.

2.1.2 Enumerative Search Algorithms
In this section, we illustrate the differences between existing
enumerative algorithms and the LENS algorithm. Assume
we want to synthesize an ARM program of four instructions
using only two registers. A program state is represented by
<r0,r1>. Figure 2 shows the search graphs constructed by
different algorithms, which will be explained in detail.

Existing Algorithms Enumerative algorithms enumerate
all possible programs whose cost are less than cost(pspec)
and search for a program that is equivalent to pspec. The
existing successful enumerative program synthesizers [2, 3,
6, 9, 32] apply an equivalence class concept, grouping pro-
grams into equivalence classes based on their behaviors on a
set of test inputs. The search enumerates all possible behav-
iors, which can be many orders of magnitude fewer than all
possible programs. Grouping programs based on a set of test
cases is effectively abstracting the search space. The fewer
the test cases, the more abstract the equivalence classes are;
each equivalence class may contain more programs that are,
in fact, not equivalent. Node u in the search graph essen-
tially corresponds to the equivalence class containing pro-
grams s  u, which have the same behavior according to
the set of inputs I .

The SIMD synthesizer [6] and the SyGus enumerative
solver [3] are enumerative synthesizers that solve simi-
lar problems to ours. Both synthesizers use equivalence
classes in a similar way to prune the search space. Here,
we will explain their pruning strategy using our new formu-
lation. Let p be a program prefix from s to u. The algorithm
searches for a program postfix q such that q(u) = t. If there
is no such q, the search can prune all program prefixes in the
same equivalence class as p away. The top part of Figure 2(a)



illustrates this idea. s1  c1 corresponds to programs in the
same equivalence class. The algorithm only needs to explore
the subgraph rooted at c1 once to prune away all paths from
s1 to c1.

We observed two main sources of inefficiency in the
existing algorithms. The first source of inefficiency comes
from restarts. A restart happens when the search finds a fea-
sible program, a program that passes the current set of test
cases but is not equivalent to pspec; the abstraction is too
coarse. The counterexample generated by a constraint solver
is added to the test cases to refine the abstraction, and the
search restarts building a new graph from scratch with re-
spect to the updated I and O. Upon restarting, the search
forgets which programs it has already pruned away, so it re-
visits them again. Figure 2(a) illustrates that the search revis-
its programs from s1 to c1 in the new graph. Conceptually,
when a new counterexample is found, the algorithm redi-
vides the search space entirely as shown in Figure 3(a). The
figure visualizes the space of all programs of size d (four in
the example in Figure 2) divided into equivalence classes.

The second source of inefficiency comes from using
more test cases than necessary. Consider programs p1 and
p2 whose behaviors are the same on the first test case
but different on the second one. If there is no q such that
(p1 ⊕ q)(I[1]) = O[1] with respect to the first test case, the
search can also prune away p2. However, since p1 and p2 are
not in the same equivalence class because of the second test
case, the search does not prune away p2. Figure 2(a) illus-
trates that the additional test case splits programs s1  c1
into two equivalence classes s2  c2 and s2  d2, so
the search has to traverse the same subgraphs at c2 and d2
separately, to find out that both of them cannot reach t2.

LENS Algorithm Our enumerative search does not have
the aforementioned inefficiencies. It does not restart the
search and uses just enough test cases to prune the search
space. More specifically, when a counterexample is found,
we build a new search graph according to the next test case
only on the programs that pass all previous test cases, as
shown in Figure 2(b). The search graph of test case 2 only
includes programs that pass test case 1 (the highlighted paths
in the search graph of test case 1). Therefore, we never re-
visit programs from s1 to c1. Conceptually, when we find
a counterexample, we refine the search by only subdividing
the feasible equivalence class, as shown in Figure 3(b).

Additionally, we discover that when we search for a pro-
gram of length d, we can in fact direct the search to a feasible
equivalence class without constructing the other equivalence
classes of programs of size d, as shown in Figure 3(c). This
can be achieved through bidirectional search, which builds
the search graph from both s and t, as shown in Figure 2(c).

2.2 Context-aware window decomposition
A context-aware window decomposition scales search tech-
niques that can solve relatively small problems to larger

(a) Costs of best programs found over time

(b) Trace to the best program found by cooperative search.
Circles indicate communications between search instances.

Figure 4. Optimizing a sequence of GA instructions from a
SHA-256 program. ‘stoch_s’ is stochastic search that starts
from random programs. ‘stoch_o’ is stochastic search that
starts from the correct reference program.

problems without losing much optimality of the final solu-
tions. The key idea is to inform the superoptimizer about
the precise precondition and postcondition under which the
optimized fragment will be executed. We harvest a precon-
dition and postcondition from a context—code surround-
ing the code to be optimized—and used them to relax the
correctness condition. The decomposition selects a random
code fragment pspec in a reference program and optimizes
the fragment in the context of the prefix ppre and the post-
fix ppost (as depicted in Figure 1). This process repeats until
none of the fragments in the program can be optimized fur-
ther. Consequently, this decomposition increases the effec-
tive size of programs that the superoptimizer can synthesize.

2.3 Cooperative search
A cooperative superoptimizer runs multiple search instances
of enumerative, stochastic, and symbolic search. The su-
peroptimizer exploits the strengths of all search techniques
through communication between search instances, exchang-
ing the best programs they have discovered so far.

To demonstrate the effectiveness of the cooperative su-
peroptimizer, we show how it optimized a GA code frag-
ment from a SHA-256 program. According to Figure 4(a),
the cooperative superoptimizer was the only superoptimizer
that found the best known code, while being as quick as the
stochastic superoptimizer. Although some of the other tech-
niques might seem better at the beginning, the cooperative
superoptimizer eventually found the best solution that the
other techniques could not; the cooperation costs some over-



head but eventually pays off. Note that all supertoptimizers
execute the same number of search instances. The detailed
descriptions of these five superoptimizers are in Section 7.3.

Figure 4(b) depicts how the cooperative superoptimizer
arrived at the best solution. A stochastic instance that started
mutating from the correct reference program first found a
better solution, so it updated the best program shared be-
tween the search instances. An enumerative instance took
that newly updated program, applied the context-aware win-
dow decomposition, and found two better solutions before
another enumerative search instance took the latest best pro-
gram, applied window decomposition, and found the final
best program. Our experiment shows that the cooperative su-
peroptimizer increased the number of benchmarks in which
the superoptimizer found best known solutions consistently
from 23 to 29 (out of 32) over using the enumerative search
alone. We define a superoptimizer as consistent at solving a
benchmark if it found best known solutions in all runs.

3. The LENS Algorithm
In Section 2, we outlined the LENS algorithm’s pruning
strategies. For the sake of simplification, we assumed that
the size of the synthesized program was fixed a priori. The
complete description provided in this section explains how
the algorithm simultaneously grows the program size and
refines the search.

3.1 Representation of Search Graphs
Each test case (ik, ok) is associated with a forward search
graph Fk of program prefixes of length `F , and a backward
search graph Bk of program postfixes of length `B . The root
sk of Fk is labeled with the input ik, and the root tk of
Bk is labeled with the output ok. We store F1, ..., Fn in the
nested map MF such that MF [u1][u2]...[un] returns the set
of programs p of length `F such that p(i1) = u1, p(i2) =
u2, ..., p(in) = un. For example, in the search graphs in
Figure 2(c), MF [〈1, 4〉][〈3, 2〉] maps to three programs: (1)
sub r1, r0, rl, lsl 1; clz r0, r0, (2) clz r1, r1; clz r0,
r0, and (3) clz r0, r0; clz r1, r1. We use Progs(MF ) to
refer to all programs stored inside MF .

The backward search graphs are stored differently, but to
simplify the explanation of our algorithm, let us assume that
the backward search graph offers the same interface; there is
a map MB such that MB [u1][u2] . . . [un] returns the set of
programs p of length `B such that p(u1) = o1, p(u2) =
o2, ..., p(un) = on. Our efficient implementation of the
backward search graphs is described in Section 3.3.3.

3.2 The Algorithm
Algorithm 1 displays our main algorithm. We first cre-
ate one test case. Therefore, at the beginning, we start the
search from F1 containing only s1, and B1 containing only
t1. Then, the main loop performs two actions—search and
expand—in each iteration. The search phase searches for

Algorithm 1 Main search
1: n← 1 . Number of test cases
2: `F ← 0, `B ← 0
3: ˆpspec← ReduceBitwidth(pspec)
4: cost← cost(pspec)
5: (I,O)← GenTest( ˆpspec)
6: MF ← Init(I), MB ← Goal(O)
7: while true do
8: for all inst ∈ Insts do . Searching Phase
9: (MF ,MB)← Connect(MF ,MB , inst, 1)

10: if Forward?(`F , `B) then . Expanding Phase
11: MF ← ExpandForward(MF ), `F ← `F + 1
12: else
13: MB ← ExpandBackward(MB), `B ← `B + 1

Algorithm 2 Connect and refine
Global variables: I,O, cost, n, pspec, ˆpspec

1: function CONNECT(MF ,MB , inst, k)
2: if k > n then . Pass all test cases
3: for all p ∈MF , p

′ ∈MB do . MF , MB are sets of
programs

4: if cost(p⊕ inst⊕ p′) < cost then
5: Verify(p⊕ inst⊕ p′)
6: . Build search graph on test case k
7: if MF is not a map then . MF is a set of programs
8: MF ← BuildForward(MF , I[k])

9: if MB is not a map then . MB is a set of programs
10: MB ← BuildBackward(MB , O[k])

11:
12: for all u ∈ keys(MF ) do . Search for a connection
13: v← inst(u)
14: if v ∈ keys(MB) then . Find a connection, so refine the

search
15: (MF [u],MB [v]) ←

Connect(MF [u],MB [v], inst, k + 1)

16: return (MF ,MB)

17: function VERIFY(p̂)
18: if p̂ ≡ ˆpspec then . Check via a constraint solver
19: for all p ∈ IncreaseBitwidth(p̂) do
20: if p ≡ pspec then . Found a better program!
21: cost← cost(p)
22: yield p
23: else
24: n← n+ 1
25: (I[n], O[n])← CounterExample( ˆpspec, p̂)

programs of size `F `B + 1 that pass all test cases. When
the search phase is complete, the expand phase increases the
size of programs we will be searching in the next iteration
by one. This process repeats until timeout.

The expanding phase (on line 10–13) increases the size
of programs by expanding all leaf nodes of either F1 or B1.
Forward? is a heuristic function that decides whether to
expand forward or backward. In particular, we expand each
leaf node u in F1 by adding u inst−−→ v for all inst ∈ Insts,
where Insts is a set of all possible instructions. Similarly,
we expand each leaf node v in B1 backward by adding
u

inst−−→ v for all inst ∈ Insts.
The searching phase (on line 7–9) find programs that pass

all n test cases by finding an instruction that can connect



leaf nodes in F1, ..., Fn to leaf nodes in B1, ..., Bn respec-
tively. The main algorithm calls Connect to find such pro-
grams. Connect(MF ,MB , inst, k), shown in Algorithm 2,
searches for programs in Progs(MF )⊕inst⊕Progs(MB)
that pass test cases k to n. It maintains the invariant that all
programs in Progs(MF )⊕ inst⊕Progs(MB) pass all test
cases 1 to k − 1. This invariant is the key to refining the
search only on a feasible equivalence class.

After Fk and Bk are built, the loop on lines 12–15
searches for a leaf node u in Fk and v in Bk that can be con-
nected by inst. keys(MF ) and keys(MB) on line 12 and 14
are sets of leaf nodes in Fk and Bk. If inst can connect u to
v, programs in Progs(MF [u]) ⊕ inst ⊕ Progs(MB [v])
pass test case k, so the algorithm refines the search on
Progs(MF [u]) ⊕ inst ⊕ Progs(MB [v]) with the next test
case k + 1. For our running example in Figure 2(c), we find
an instruction sub r0, r0, r1 connecting u1 and v1 of
test case 1, so we refine the search on the highlighted pro-
grams s1  u1 → v1  t1.

When we recursively call Connect, MF will eventu-
ally become a set of programs instead of a nested map, as
well as MB . Lines 7–10 take care of building Fk for pro-
grams in MF and Bk for programs in MB . Fk and Bk

for each k are built once and saved on line 15 to be used
later when Connect is called with different insts. If there
are no more test case left, lines 2–5 verify all programs in
MF ⊕ inst ⊕ MB against the reference program. Verify
function performs equivalence verification. If the two pro-
grams are not equivalent, an counterexample is added to I
and O on line 25. If they are equivalent, the algorithm yields
the candidate program and continues searching for solutions
with lower costs until timeout.

3.3 Implementation Details
3.3.1 Challenges of Backward Search
We have identified two main challenges in implementing
backward search in a program synthesizer. First, the synthe-
sizer needs to evaluate an instruction backward; it needs an
inverse function for every instruction. Second, in the forward
direction, an instruction inst is a one-to-one function that
map a state u to v. In contrast, in the backward direction,
inst is a one-to-many function that map the state v to a set
of states, one of which is u.

Fortunately, we can mitigate these challenges by reducing
bitwidth, using only four bits to represent a value. First, we
can avoid implementing an inverse emulator by constructing
an inverse function table for every instruction. We execute
every instruction on all possible combinations of 4-bit input
arguments’ values and memorize them in the inverse table.
Second, the small bitwidth also reduces the number of states
an instruction can transition to in the backward direction.
For example, in 32-bit domain, an inverse instruction add
transitions from one state to 232 states; in contrast, in 4-bit
domain, the same instruction only transitions to 24 states.

3.3.2 Reduced Bitwidth
Let bit be the actual bitwidth and b̂it be the reduced bitwidth,
which is four in our case. The reduced bitwidth not only
enables the backward search but also allows us to initially
divide the search space more coarsely, which is desirable
because the search graph even for a single test can be very
large. For example, an ISA with four 32-bit registers can
have 232×4 states and, hence, up to 232×4 nodes in the graph.

Apart from the second-step equivalence verification (line
20 of Algorithm 2), the search algorithm operates in the
reduce-bitwidth domain. Therefore, we need both reduced-
bitwitdh and precise versions of a program state and an
ISA emulator. We implement an emulator that can be pa-
rameterized by bitwidth to instantiate both versions. For
example, the precise ARM emulator interprets instruction
movt r0, 1 as writing 1 to the top 16 bits of a 32-bit reg-
ister. The 4-bit ARM emulator should interpret the same in-
struction as writing 1 to the top 2 bits of a 4-bit register. Im-
plementing a parameterizable program state is simple. We
just need to use a specified number of bits to represent each
entry in a program state.

Additionally, we must have a way to convert programs
between the two domains. In particular, at the beginning,
we convert the reference program pref from the precise do-
main to the reduced-bitwidth domain (line 3 in Algorithm 1)
by replacing constants appearing in the program with their
reduced-bitwidth counterparts. We replace a constant c us-
ing the following function α:

ĉ = α(c) =



b̂it if shift?(c) ∧ (c = bit)

b̂it− 1 if shift?(c) ∧ (c = bit− 1)

b̂it/2 if shift?(c) ∧ (bit/2 ≤ c < bit− 1)

1 if shift?(c) ∧ (1 < c < bit/2)

c mod 2b̂it otherwise

where shift?(c) checks if c is a shift operand. α is designed
to preserve semantics of shift operations in a meaningful
way. For example, it translates shift by 31 in 32-bit domain
to shift by 3 in 4-bit domain. Apart from shift constants, α
simply masks in the lowest b̂it bits.

During this conversion, we memorize every replacement
of c with ĉ, so that we can map each reduced-bitwidth con-
stants back to the set of original constants to obtain candi-
date programs in the precise domain. We construct the re-
placement map γ by storing γ[ĉ] ← γ[ĉ] ∪ {c} for every
constant c in pref . Before the precise equivalence verifica-
tion, the reduced-bitwidth constant ĉ is replaced with every
constant in the set γ[ĉ] (line 19 in Algorithm 2) with the ex-
pectation that one of them will lead to a correct solution.

We are able to optimize many bitwidth-sensitive pro-
grams (e.g. population count and computing higher-order
half of multiplication) using this reduced-bitwidth trick.

3.3.3 Data Structure for Backward Search Graph
We could store backward search graphs the same way we
store forward search graphs. However, it would require a



Routine Non-context-aware Context-aware
Equivalence verification pspec ≡ p ppre ⊕ pspec ⊕ ppost ≡ ppre ⊕ p⊕ ppost
Input text-cases update I = I ∪ {ice} I = I ∪ {ppre(ice)}

Output text-cases update O = O ∪ {pspec(ice)} O = O ∪ {ppre ⊕ pspec(ice)}

Table 1. The differences between non-context-aware and context-aware decomposition. p is a candidate program. ice is the
input counterexample returned by the constraint solver if the candidate program is not equivalent to the reference program.

large amount of memory because in the backward direction,
an instruction is a one-to-many function; one program post-
fix can appear in a large number of backward equivalence
classes. Instead of using a nested map to store all backward
search graphs, we construct n separate maps to store n back-
ward search graphs B1, ..., Bn. We can find a program post-
fix p such that p(u1) = o1, ..., p(un) = on, by looking up
Y [u1] ∩ ... ∩ Y [un]. The pseudocode in Algorithm 1 and
Algorithm 2 has to be modified slightly to support this data
structure.

4. Context-Aware Window Decomposition
We can scale a search technique that can synthesize rel-
atively small programs to optimize larger programs using
a decomposition. Let pref be a large program to be opti-
mized, and L be a window size. We can decompose pref
into ppre ⊕ pspec ⊕ ppost such that length(pspec) < L, and
optimize pspec, the code inside the window. Peephole opti-
mizations will try to optimized pspec alone, or in the best
scenario, with a precondition that is often not precise. The
precondition and postcondition relax the correctness con-
dition and provide invariants that may be exploited by the
search. Therefore, we believe that optimizing pspec with the
most precise precondition and postcondition, essentially in
the context of its prefix ppre and postfix ppost, can lead
to finding a better program. We call this decomposition a
context-aware window decomposition. In our implementa-
tion, we pick a random position of the window and optimize
the program. This process repeats until we cannot optimize
the program at any window’s position anymore.

To support the context-aware decomposition, we need
to modify search algorithms slightly. Note that any search
technique can be modified to be context-aware. Recall that a
search technique looks for a program p such that for each i ∈
I, o ∈ O . p(i) = o. To make the search context-aware, we
do not need to change this search routine, but only need
to adjust the equivalence condition used during equivalence
verification and the way test cases are updated as shown in
Table 1. Normally, when we find p that passes all test cases,
we uses a constraint solver to verify if pspec ≡ p. If they
are not equivalent, the constraint solver will return an input
counterexample ice, which we use to update the test inputs I
and test outputsO as shown in Column ‘non-context-aware’.
Then, the search continues to find a new candidate program,
and so on. To make the search context-aware, we ask the
constraint solver if p is equivalent to pspec in the context
of ppre and ppost, in particular if ppre ⊕ pspec ⊕ ppost ≡

ppre ⊕ p ⊕ ppost. If they are not equivalent, the constraint
solver will return ice, which is an input to ppre (not directly
to p), so we have to update the test cases differently as shown
in Column ‘context-aware’.

Concrete Example
Assume we want to optimize the following ARM program:

P_pre: cmp r3, r4
moveq r1, #0 // mov if r3 = r4
movne r1, #1 // mov if r3 != r4

P_spec: cmp r2, #31
movhi r1, #0 // mov if r2 > 31
andls r1, r1, #1 // and if r2 <= 31

The decomposition selects the window as labeled; ppost is
empty. Without ppre, pspec cannot be improved because no
faster code modifies r1 as pspec does. With ppre, however,
the superoptimizer learns that the value of r1 is either 0
or 1 at the beginning of pspec, so the last instruction r1 =
r1 & 1 does not have any effect. Thus, the superoptimizer
can simply remove it. Note that we do not have to explicitly
infer this precondition of pspec. It is implicit, captured by
running ppre along with pspec during test case evaluations
and equivalence verification. We also find that ppost helps
the superoptimizer discover faster code.

5. Cooperative Superoptimizer
To utilize strengths of different search techniques, we intro-
duce a cooperative superoptimizer that combines all search
techniques in a simple fashion. The cooperative superopti-
mizer launches all search techniques in parallel and may run
more than one search instance of each search technique.

5.1 Terminology
This section defines the terminology and symbols of varia-
tions of different search techniques used in the rest of the pa-
per. The base search algorithms are symbolic (SM ), stochas-
tic (ST ), and enumerative (E). There are two modes of
search. Synthesize mode (s) is when a search does not use a
starting correct program except for equivalence verification.
Optimize mode (o) is when a search uses a starting correct
program beyond equivalence verification. The table below
summarizes the symbols we use.

Symbol Description
Es enumerative on entire code fragment
Eo enumeratvie with decomposition
SMs symbolic on entire code fragment
SMo symbolic with decomposition
ST s stochastic that starts from a random program
ST o stochastic that starts from the input correct program



5.2 Communication between Search Instances
The search instances aid each other by exchanging informa-
tion about the current best solution equivalent to pref . When
a search instance finds a new best program, it updates the
shared best solution pbest. The other search instances may
obtain pbest to aid in their search processes. In particular,
different types of search techniques utilize pbest as follows:

• Es and SMs do not use pbest.
• Eo and SMo apply the context-aware window decompo-

sition on pbest.
• ST s reduce its search space by only exploring programs

with up to length(pbest) instructions.
• ST o restarts the search from pbest. In practice, it is better

to allow some divergence among stochastic instances.
Therefore, our stochastic instances check pbest every
10,000 mutations and restart the search from pbest only
if cost(pbest) is much less than the cost of the local best
solution; in our implementation, we restart when the dif-
ference is more than 5.

5.3 Practical Configuration of Search Instances
We present a configuration for allocating search instances
that worked well in our experiment; however, it might not be
optimal. Our cooperative superoptimizer executes N search
instances with the following distributions: N/2− 1 Eo, one
Es, two ST s, three ST o, and the rest for SMo. We dedicate
almost half of the threads for enumerative search because
it performs the best in most benchmarks (see Section 7.1).
Multiple enumerative instances attempt to optimize different
parts of the program at the same time, reducing overall
search time to find a final solution. We allocate one thread
for Es because if the size of the final solution is small, Es

will find an optimal solution quickly. A few ST s instances
are allocated because they can perform very well on some
benchmarks on which E performs poorly. We also dedicate
a few threads for ST o instances because they often help Eo

instances reach the final solution faster. Finally, we allocate
the rest of the resources to SMo, which helps discover
optimizations that involve synthesizing arbitrary constants.
For search instances that use the window decomposition, we
use four sizes of window L, 2L, 3L, and 4L, where L is a
constant specific to the ISA.

6. Implementation
We develop GREENTHUMB [21], a framework for building
superoptimizers for different ISAs and testing search tech-
niques. We define the semantics of an ISA by implement-
ing an ISA emulator in Rosette [30], which is built on top
of Racket. The enumerative and stochastic search uses the
emulator to execute a sequence of instructions on concrete
program states. Additionally, since the emulator is written in
Rosette, we also obtain, for free, (i) the program equivalence
verifier, and (ii) the symbolic search for that particular ISA.

We instantiate GREENTHUMB to build superoptimizers for
two very different ISAs.

ARM is a RISC architecture that is widely used in many
devices. We implement a superoptimizer for ARMv7-A and
model the performance cost function based on ARM Cortex-
A9 [4]. An ARM program state includes 32-bit registers,
memory, and condition flags. The default instruction repre-
sentation provided by GREENTHUMB, which includes op-
code and operands, is extended to support ARM instructions
by including a condition code suffix and optional shift. We
also extend GREENTHUMB’s stochastic search by adding
new mutation rules: mutating condition code, and mutating
optional shift. The smallest window size L is set to 2. Recall
that there are four sizes of window L, 2L, 3L, and 4L.

GreenArrays GA144 is a low-power processor, composed
of many small cores [12]. It is a stack-based 18-bit processor.
Each core has two registers, two small stacks, and memory.
Each core can communicate with its neighbors using read
and write instructions. The program state for GA includes
registers, stacks, memory, and a communication channel,
similar to the one used in the superoptimizer in Chlorophyll
[20]. A communication channel is an ordered list of (data,
neighbor port, read/write) tuples representing the data that
the core receives and sends. For two programs to be equiv-
alent, their communication channels have to be identical.
Only one GA instruction, fetch-immediate, has an operand,
which is for specifying the immediate constant value, so we
extend the stochastic search to mutate an operand only for
that opcode. We set the smallest window size L to 7. We
model the performance cost based on GA144’s instruction
timing [12].

Limitations
We do not model memory access latency variations caused
by misses at different levels of caches. We assign the same
cost to all loads and stores. Therefore, our performance
model is imprecise; as a result the superoptimizer may out-
put a program that is actually slower than other candidates
it has explored. To work around this problem, the superop-
timizer can output the best ten programs instead of only the
best one. This way, we can try running all of them on the real
machine and select the fastest one empirically.

The second limitation is that the superoptimizer can only
optimize code without loops and branches. In order to opti-
mize across multiple basic blocks with loops and branches,
we will need to modify the superoptimizer.

7. Experimental Evaluation
Our key result is that we improve on the state of the art
in superoptimization, represented by STOKE [24, 25], the
stochastic superoptimizer. On large benchmarks, our imple-
mentation of STOKE produced ARM programs of length
10–27 and GA programs of length 18–32. Our coopera-
tive superoptimizer optimized the benchmarks faster (12x



faster on average) and obtained better solutions (the perfor-
mance cost of our code is, on average, 18% lower than that
of stochastic search).

We implemented all search techniques as well as ARM
and GA emulators in our framework using Racket. Since all
search techniques are implemented in the same language and
using the same emulator, we can compare them fairly. As
discussed in Section 7.5, we tried to make a fair comparison
between all search techniques.

This section presents detailed evaluation of our algo-
rithms, starting from the new enumerative algorithm, using
the following benchmark suites.

ARM Hacker’s Delight Benchmarks consist of 16 of the
25 programs identified by [13] drawn from Hacker’s Delight
[33]. We excluded the first nine programs from our set of
benchmarks because they are very small. We used code pro-
duced by gcc -march=armv7-a -O0 as the input programs
to the superoptimizers. Their sizes ranged from 16 to 60 in-
structions. The timeout was set to one hour.

GA Benchmarks consist of frequently-executed basic blocks
from MD5, SHA-256, FIR, sine, and cosine functions from
the Chlorophyll compiler’s benchmarks [20]. We used Chloro-
phyll without superoptimization to generate these basic
blocks. The sizes of the input programs in this benchmark
suite ranged from 10 to 56 instructions. The timeout was set
to 20 minutes.

7.1 Experiment I: Evaluating the LENS algorithm
Experiment I is designed to evaluate the base search tech-
niques: SMs, Es, and ST s. Recall that superscript s indi-
cates synthesize mode (no window decomposition). This ex-
periment will help us answer which search technique is a
suitable building block for a superoptimizer with window
decomposition. For each benchmark, we ran each search
technique on a single thread 16 times.

Hypothesis A Enumerative search is faster and can solve
larger benchmarks than the other base search techniques.
Es is superior in terms of speed and scalability: it was

the fastest search; it solved all except two benchmarks; and
it could solve larger benchmarks than other synthesizers. Re-
garding consistency—which is desirable because it obviates
the need for redundant instances, improving the chances of
finding optimal solutions—almost all of Es 16 search in-
stances found optimal solutions in each of its solved bench-
marks. Note that there is small amount of randomness in the
enumerative search because the initial test cases are gener-
ated randomly.

There were a total of 22 benchmarks in which one of the
search techniques found optimal solutions in at least one of
the 16 runs. Columns SMs, Es, and ST s of Figure 5 sum-
marize the results. Figure 5(a) displays the number of bench-
marks solved by each search technique, categorized by size.
A search technique solved a benchmark if it an optimal so-
lution in one of its run. Row ‘benchmarks’ in Figure 5(b)

(a) Number of solved benchmarks, categorized by size

Solved ST s SMs Es Es′ Es′′ Es′′′

Benchmarks 13 12 20 13 12 11
Instances 7.2 13.5 14.9 15.8 15.5 15.9

Es speedup 14x 52x 1x 2.7x 5.2x 11x
(b) Total number of solved benchmarks, average number of instances
per solved benchmark, and search time speedup by Es

Figure 5. Comparing base search techniques

summarizes the numbers of solved benchmarks. Row ‘in-
stances’ displays the average numbers of search instances
that found optimal solutions per solved benchmark. In terms
of search time, we evaluated each search technique against
Es by comparing the best runs of the benchmarks they both
solved. Row ‘Es speedup’ shows how much faster Es was
on average compared to a particular search technique.

According to Figure 5(a), Es could synthesize larger
ARM programs than ST s and SMs could. For GA, Es

could synthesize larger programs than SMs could. While
Es and ST s were comparable at synthesizing large GA
programs, ST s was much worse at synthesizing smaller GA
programs. This might be because the cost function of ST s

does not fit well with these GA benchmarks, or the mutations
we have are not the best for GA. Interestingly, the largest GA
benchmark, which Es failed to solve, was solved by ST s.
This result suggests that sometimes the cost function can
be very effective in guiding the search in some particular
problems. Another benchmark that Es failed to solve can
be solved by SMs. This is because the optimal program
contains a constant not included in the pre-defined constant
list of Es and ST s.

Hypothesis B The LENS algorithm improves on the exist-
ing enumerative algorithms.

With the same experimental setting, we compared multi-
ple versions of enumerative search:

• Es: LENS with all pruning strategies
• Es′: Es without backward search (unidirectional search)
• Es′′: Es′ without reduced-bitwidth trick
• Es′′′: Es′′ without refinement through incremental test

cases. Es′′′ represents the existing enumerative search
but without the stack representation [6].

Columns Es–Es′′′ of Figure 5 summarizes the results. The
pruning strategies we introduce not only increase the size of
code an enumerative search can solve but also speed up the
search; Es was, on average, 11x faster than Es′′′.



7.2 Experiment II: Evaluating window decomposition
Experiment II is designed to test the effectiveness of context-
aware window decomposition. We testEo, which is context-
aware, against a modified version of Eo, which is not
context-aware, on the 12 benchmarks that Es cannot syn-
thesize optimal solutions from the previous experiment. Re-
call that the superscript o indicates optimize mode (see Sec-
tion 5.1). On ARM benchmarks, we ran a superoptimizer
using 32 Eo search instances on a 16-core hyper-threaded
machine. On GA benchmarks, we ran 16 search instances on
a 16-core Amazon EC2 machine. For each benchmark, we
repeated the experiment three times.

Hypothesis C The context-aware window decomposition
technique enables the enumerative search to find better code
than does the non-context-aware window decomposition.

Considering the best out of the three runs, in six bench-
marks, the context-aware decomposition found solutions
with 1.3x–3x lower cost than did the non-context-aware de-
composition. In the rest, both of them found solutions with
the same costs.

7.3 Experiment III: Evaluating cooperative search
Experiment III is designed to evaluate superoptimizers based
on different search techniques with context-aware window
decomposition. We use the same experimental set up as
in Section 7.2. We evaluate the following five versions of
superoptimizers, each of which runs N search instances
(N = 32 for ARM, and N = 16 for GA).

Superoptimizer Search instances used
S̃T

s
all ST s instances with no communication

S̃T
o

all ST o instances with no communication
S̃M one SMs instance, N − 1SMo instances
Ẽ one Es instance, N − 1Eo instances
C̃ one Es, N/2− 1Eo, two ST s, three ST o,

and the rest for SMo instances

Search instances of each superoptimizer communicate with
each other except in S̃T

s
and S̃T

o
, which represent STOKE

implemented in our framework. In Ẽ, S̃M , and C̃, we add
one instance of an enumerative or symbolic search in syn-
thesize mode (Es or SMs) because these instances can find
an optimal solution should the optimal solution be small.

Hypothesis D The enumerative superoptimizer can often
synthesize best known programs more consistently and faster
than the stochastic and symbolic superoptimizers.
Ẽ was consistent on 2.1x, 2.6x, and 1.4x more bench-

marks than S̃T
s
, S̃T

o
, and S̃M . We define a superoptimizer

as consistent at solving a benchmark if it found programs as
optimal as the best known solution in all runs. Consistency
is desirable because in practice we want to find the best pro-
gram in one run not multiple runs. Then, we did a pair-wise
comparison of the median search time between Ẽ and each
of the other superoptimizers on the benchmarks they both
solved consistently. We found that Ẽ was also on average
9x, 4.6x, and 14x faster than S̃T

s
, S̃T

o
, and S̃M .

Figure 6 shows the performance costs of the best correct
programs found in each of three runs; the lower the better.
The reported costs of each benchmarks are normalized by
the cost of the best known program of that particular bench-
mark. Table 2 reports the median time to finding the best
known solutions for the various superoptimizers. If a su-
peroptimizer did not find a program as optimal as the best
known solution on one or more runs on a benchmark, the
table excludes that corresponding entry.

Hypothesis E The cooperative superoptimizer improves on
the enumerative superoptimizer by utilizing the strengths of
other search techniques.

We compare C̃ and Ẽ. While Ẽ uses only enumerative
search instances, C̃ uses enumerative as well as symbolic
and stochastic search instances. According to the result, C̃
was consistent at finding best known solutions on 29 out of
32 benchmarks, while Ẽ was consistent on 23 benchmarks.
C̃ and Ẽ were comparable in term of search time; C̃ was
33% faster, on average. Columns C̃ of Figure 6 and Table 2
display the costs of the best correct programs found by C̃
and its median time to find the best known solutions for all
benchmarks. Compared to the algorithm used in the state-
of-the-art superoptimizer (STOKE), C̃ was, on average, 12x
faster than the best of S̃T

s
and S̃T

o
. The performance cost

of code produced by C̃ is, on average, 18% lower than that
of the best from S̃T

s
and S̃T

o
.

We also tested C̃ ′′′—the cooperative superoptimizer with
the enumerative search without our pruning strategies—to
examine how much the performance of the enumerative in-
stances affect the performance of the cooperative superop-
timizer. Columns C̃ ′′′ of Figure 6 and Table 2 display the
costs of the best correct programs found by C̃ ′′′ and its me-
dian time to find the best known solutions. According to the
result, C̃ ′′′ could not consistently solve seven benchmarks
that C̃ could. Hence, we conclude that our pruning strate-
gies in the enumerative search are crucial for obtaining the
best performance out of the cooperative superoptimizer.

7.4 Experiment IV: Runtime speedup over gcc -O3

Experiment IV is designed to test the effectiveness of the
cooperative superoptimizer against an optimizing compiler.
We measure the execution time of all benchmarks in this
experiment on an actual ARM Cortex-A9.

Hypothesis F Cooperative superoptimizer can optimize
code generated from a non-optimizing compiler and obtain
code as fast as generated from an optimizing compiler.

From the experiment in Section 7.3, C̃ optimized code
generated from gcc -O0 and produced code as fast as gcc
-O3 code for all ARM benchmarks. In fact, C̃ found faster
code than those generated from gcc -O3 on five bench-
marks. One of them is 17.8x faster. Thus, for the new ar-
chitectures for which we do not have good optimizing com-
pilers, our superoptimizer can help generating efficient code.



(a) ARM Hacker’s Delight Benchmarks

(b) GA Benchmarks

Figure 6. Costs of best programs found by the different superoptimizers (normalized by the cost of the best known program).
A dash represents the cost of the best program found in one run. A dash may represent more than one run if the best programs
found in different runs have the same cost. If one or two runs did not find any correct program that is better than the input
program, the vertical line is extended past the chart. If none of the runs found a correct program that is better than the input
program, a rectangle is placed at the top of of the chart.

(a) ARM Hacker’s Delight Benchmarks

Benchmarks S̃T
s

S̃T
o

S̃M Ẽ C̃ C̃′′′

p10 - - - 145 88 188
p11 244 188 - 49 92 1171
p12 - - - 566 646 -
p13 13 6 85 3 3 2
p14 - - 755 19 11 9
p15 837 - 591 26 8 8
p16 5 5 83 - 7 6
p17 15 12 82 11 6 72
p18 21 38 - 7 9 89
p19 - 21 - 76 36 49
p20 - 254 - 129 113 365
p21 1316 - - - 1139 -
p22 - - - - - -
p23 - - - 707 665 -
p24 - 1440 - 73 151 -
p25 72 - 47 2 2 1

(b) GA Benchmarks

Benchmarks S̃T
s

S̃T
o

S̃M Ẽ C̃ C̃′′′

complexA 45 258 136 - 72 63
complexB - - 186 43 52 -
complexC - - 7 - 21 17

fir 7 - 501 153 23 63
interp 119 - 109 12 7 22
rrotate - - 104 108 92 -
md5f - - 832 97 71 34
md5g - - 1078 206 163 259
md5h - - 44 2 1 1
md5i - - 690 549 520 -
sha1 - - - 20 24 178
sha2 - - - - 179 214

ga-p13 - - - 27 127 -
ga-p14 - - - - 187 281
ga-p15 - - - - - -
ga-p17 - - - - - -

Table 2. Median time in seconds to reach best known programs. "-" indicates that the superoptimizer failed to find a best
known program in one or more runs. Bold denotes the fastest superoptimizer to find a best known program in each benchmark.

Hypothesis G Cooperative superoptimizer can further op-
timize real-world code generated by an optimizing compiler.

We compiled WiBench [37] (a kernel suite for bench-
marking wireless systems) and MiBench [14] (an embedded
benchmark suite) using gcc -O3 for ARM. We extracted ba-
sic blocks from the compiled assembly and selected 13 ba-
sic blocks that contain more than seven instructions and have
more data processing than load/store instructions. For six out
of 13 code fragments, C̃ found faster fragments compared to
those generated by gcc -O3, offering up to 82% speedup.

Table 3 summarizes characteristics of the program frag-
ments found by C̃ that are faster than those generated by gcc
-O3. Column ‘runtime speedup’ reports how much faster
the fragments are when running on an actual ARM proces-
sor. The last column demonstrates that different base search
techniques contribute to finding the best solutions in many
benchmarks. For example, in the wi-txrate5a benchmark
from WiBench’s rate matcher kernel, a SMo instance first
optimized the input program, and then a ST o instance opti-
mized the program found by the SMo instance and arrived at
the best known solution. In mi-bitshift from MiBench’s



Optimization 1 Optimization 2
before after before after

cmp r1, #0
mov r3, r1, asr #31
add r2, r1, #7
mov r3, r3, lsr #29
movge r2, r1
ldrb r0, [r0, r2, asr #3]
add r1, r1, r3
and r1, r1, #7
sub r3, r1, r3
asr r1, r0, r3
and r0, r0, #1

cmp r1, #0
mov r3, r1, asr #31
add r2, r1, #7
mov r3, r3, lsr #29
movge r2, r1
ldrb r0, [r0, r2, asr #3]
bic r1, r2, #248
sub r3, r1, r3
asr r1, r0, r3
and r0, r1, #1

cmp r1, #0
mov r3, r1, asr #31
add r2, r1, #7
mov r3, r3, lsr #29
movge r2, r1
ldrb r0, [r0, r2, asr #3]
bic r1, r2, #248
sub r3, r1, r3
asr r1, r0, r3
and r0, r1, #1

asr r3, r1, #2
add r2, r1, r3, lsr #29
ldrb r0, [r0, r2, asr #3]
and r3, r2, #248
sub r3, r1, r3
asr r1, r0, r3
and r0, r1, #1

(a) (b) (b) (c)

Figure 7. Optimizations that the cooperative superoptimizer discovered when optimizing mi-bitarray benchmark. Blue
highlights the difference between before and after each optimization. (a) is the original program. (b) is the intermediate
program. (c) is the final optimized program.

Program gcc -O3 Output Search Speed Path to
length length time (s) -up best code

p18 7 4 9 2.11 Es

p21 6 5 1139 1.81 Eo∗, SMo∗, ST o*
p23 18 16 665 1.48 ST o∗ → Eo∗
p24 7 4 151 2.75 ST o∗ → Eo∗

→ ST o → Eo∗
p25 11 1 2 17.8 Es

wi-txrate5a 9 8 32 1.31 SMo → ST o

wi-txrate5b 8 7 66 1.29 Eo

mi-bitarray 10 6 612 1.82 SMo∗ → Eo∗
mi-bitshift 9 8 5 1.11 Eo

mi-bitcnt 27 19 645 1.33 Eo → ST o → Eo

→ ST o → Eo

mi-susan 30 21 32 1.26 ST o

Table 3. Execution time speedup over gcc -O3 code and
search instances involved in finding the solution. In the last
column, X → Y indicates that Y uses the best code found
by X . ∗ indicates exchanging of the best code among search
instances of the same search technique.

bit shift benchmark, an Eo instance immediately found the
best program by applying the optimization explained in the
concrete example in Section 4. In p21 from Hacker’s De-
light, the path to the best known solution involves passing
the latest best programs between many Eo, SMo, and ST o

instances repeatedly.
To illustrate how the different types of search instances

work together in practice, we explain how the cooperative
superoptimizer found the best program in the mi-bitarray
benchmark, getting a specific bit in an array. The superopti-
mizer found two optimizations (Optimization I and II) dis-
played in Figure 7. The code in blue is inside a window, and
the rest are the context used in the window decomposition.
First, a SMo instance optimized code inside a small window
of two instruction to one instruction. The SMo instance was
able to perform this optimization because it can synthesize
an arbitrary constant, in this case, 248. After the SMo in-
stance discovered Optimization I, an Eo instance optimized
the code further. Optimization II performed by the Eo in-
stance, in fact, consists of two different optimizations. The
first optimization transforms:
cmp r1, #0
add r2, r1, #7
movge r2, r1 // mov when r1 >= 0 (signed)

to:
asr r3, r1, #2 // r3 = r1 s>> 2
add r2, r1, r3, lsr #29 // r2 = r1 & (r3 u>> 29)

eliminating the cmp instruction and the conditional suffix.
Note that this transformation is valid in any context. In the
second optimization, the superoptimizer learned from the
postfix—specifically at the instruction sub r3, r1, r3—
that only the difference between the values of r1 and r3 mat-
ters, and the exact values of r1 and r3 do not. This particular
optimization illustrates that not only precondition but post-
condition also helps the superoptimizer discover more opti-
mizations. Notice that theEo instance used the constant 248,
found by SMo, to synthesize the final code, as the optimized
fragment contains 248. Hence, in order to obtain the final
code in this benchmark, we need the enumerative search, the
symbolic search, and the context-aware window decomposi-
tion all together.

7.5 Existing Superoptimizers’ Implementations
The original stochastic superoptimizer (STOKE) [24, 25]
is for x86. Consequently, we could not use STOKE in our
experiments. STOKE can evaluate approximately 106 can-
didates per second by executing programs natively [25] or
running emulators on a cluster of machines [24]. Without an
ability to run programs natively or an access to run programs
on a cluster of machines, one will not be able to achieve
this kind of performance. Nevertheless, our stochastic su-
peroptimizer is able to evaluate approximately 20,000 can-
didates per second and synthesize up to 10 ARM instruc-
tions within an hour using emulators on one machine with
32 cores. However, the optimized program with 10 instruc-
tions that our stochastic superoptimizer synthesized is not
optimal, so it is not reported in the experiment in Section 7.1.
Note that the size of our ARM search space is similar to x86
search space explored in the original STOKE without JIT
[24]: they both have 400–1,000 different variations of op-
codes [26]. Although ARM has much fewer actual opcodes
than x86, many variations are created by the combination of
opcodes, optional shift, and conditional suffixes.



Similarly, we created Es′′′ by modifying Es to imple-
ment the algorithm used in the SIMD synthesizer [6] and the
SyGus enumerative solver [3]. We note that Es′′′ does not
use the stack-based program representation, used in [6] to
remove search space symmetries due to register renaming.
We did not use this representation because we observed that
some optimal programs cannot be obtained from this repre-
sentation, unless we introduce new pseudo-instructions for
peaking into the stack and dropping values from the stack.
Note that this optimization is orthogonal from the search al-
gorithm and can improve our search technique.

8. Related Work
Symbolic search is popular in program synthesis tools
such as Sketch [27] and Rosette [31]. This search tech-
nique is also used in the Chlorophyll compiler’s superop-
timizer [20]. Although constraint solvers have many clever
pruning strategies (e.g. conflict clauses) and heuristics to
make decisions, constraint solvers are not optimized for
program synthesis problems. Component-based synthesis
[13] introduces an alternative encoding, which significantly
improves the performance of a symbolic search; however,
even with this encoding, the symbolic solver from SyGus’14
competition still did not perform well [3]. Another pruning
strategy using divide-and-conquer to break QFBV formula
potentially reduces synthesis time by many orders of mag-
nitude [28], but it is likely synthesizing the same program
as given. The refutation-based approach used in the CVC4
solver [23], the winner of SyGus’15 competition, is also not
suitable for superoptimization problems because it tends to
produce very large solutions with many if-else constructs.

Stochastic search, first used in STOKE [24, 25], randomly
mutates a program to another using cost function to deter-
mine the acceptance of the mutation. STOKE is the first su-
peroptimizer that is able to synthesize large programs (10–15
x86 instructions) in under an hour. The use of cost function
to guide the search is one of the keys to its effectiveness. The
weakness of this search is a possibility to get stuck at local
minima and, as a result, fail to reach an optimal solution.

Enumerative search is used in many superoptimizers and
program synthesizers. Enumerative search can be extremely
fast if it is done right, as the winning teams of two synthesis
competitions (ICFP’13 [2] and SyGus’14 [3]) employed this
technique. This is because an enumerative search is highly
customized to solve a particular problem it is designed for.
The problem domain knowledge can be encoded into the
search as systematic pruning strategies or just as ad-hoc
heuristics, such as which branch in the search tree should
be explored first. In our experience, building an enumerative
search is easy, but building a fast enumerative search is
difficult because a fast enumerative algorithm requires many
clever pruning strategies to make the search tractable.

We have tried existing pruning strategies including using
virtual registers [34] and a stack-base program representa-

tion [6] to reduce symmetry, using a canonical form [5], and
memorization [2]. However, these pruning strategies alone
do not work for our problem domain as well as for [2, 3, 6].
This is because our search space is bigger. For example, the
SIMD synthesizer usually considers only a small number of
instructions that are predicted from the input non-vectorized
programs. However, we cannot restrict the search space in
the same way because our goal is to find the optimal code
fragment, which may require unexpected instructions. The
SyGus and ICFP competitions only include programs that
take in one argument and produce one return value. Thus,
we have introduced new pruning strategies that make pro-
gram synthesis problems more tractable.

However, new pruning strategies are still needed if we
want to solve synthesis problems with even bigger search
space. For example, memorization similar to [2] should ac-
celerate the search even more. However, from our experi-
ence, the memorization system requires a decent amount of
engineering effort to support quick lookup in a very large
database that contains more than billion programs in order
to speed up our synthesis process. We did not spend enough
effort to implement a very efficient memorization system, so
our superoptimizer does not currently utilize this technique.

9. Conclusion
This paper introduced the LENS algorithm, which can opti-
mize larger program fragments compared to existing tech-
niques. To optimize even larger program fragments, we ap-
plied a context-aware window decomposition, optimizing a
subfragment of the entire code with the precise precondi-
tion and postcondition from the surrounding context. Lastly,
we improved upon the LENS algorithm by combining sym-
bolic and stochastic search into our system. To make super-
optimization even more practical, we can cache superopti-
mized code to avoid an expensive search when optimizing
programs we have seen before.

In summary, we introduced strategies to scale up super-
optimization to optimize real-world programs. We hope that
our work will enable program developers to use a super-
optimizer to further optimize code generated from an op-
timizing compiler, when performance is critical. Similarly,
we also hope to enable a rapid compiler construction for a
new ISA by side stepping the laborious development of tra-
ditional compiler optimizations by using superoptimization.
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