
Comprehensive Path-sensitive Data-flow
Analysis

Aditya Thakur

July 5, 2008

Contents

1 Introduction 5

2 Preliminaries 9
2.1 Control-flow graphs . 9
2.2 Data-flow Analysis . 13

2.2.1 Constant Propagation 15
2.2.2 Liveness Analysis . 15
2.2.3 Anticipatability Analysis 16

2.3 Destructive Merge . 16
2.3.1 Forward Analysis . 16
2.3.2 Backward Analysis . 17

2.4 Automata Theory . 18
2.5 Overall Algorithm . 22

3 The Transformation 25
3.1 For Forward Analysis . 26

3.1.1 The Näıve Solution . 26
3.1.2 Computing The Region Of Influence 29
3.1.3 The CFG Restructuring 39

3.2 Back to Backward Analysis 55
3.2.1 Computing The Region Of Influence 55
3.2.2 The CFG Restructuring 65

4 Tradeoff 79
4.1 Theoretical Analysis . 79
4.2 Heuristic Solution . 89

5 Related Work 91
5.1 Hot Path Graph Approach . 91
5.2 Other related approaches . 94

1

6 Experimental Results 95
6.1 Forward Analysis . 95

6.1.1 Benefits of Split Approach 95
6.1.2 Cost of Split Approach 97

6.2 Backward Analysis . 97
6.2.1 Benefits of Split Approach 97
6.2.2 Cost of Split Approach 98

7 Conclusions and Future Directions 99
7.1 Future Directions . 99

7.1.1 Interprocedural Analysis 99
7.1.2 Points-to Analysis . 100
7.1.3 Demand-driven Analysis 100
7.1.4 Combined Restructuring for Multiple Analysis 101

7.2 Conclusions . 103

2

Abstract

Data-flow analysis is an integral part of any aggressive optimizing compiler.
We propose a framework for improving the precision of data-flow analysis in
the presence of complex control-flow. We initially perform data-flow analy-
sis to determine those control-flow merges which cause the loss in data-flow
analysis precision. The control-flow graph of the program is then restruc-
tured such that performing data-flow analysis on the resulting restructured
graph gives more precise results. The proposed framework is both simple, in-
volving the familiar notion of product automata, and also general, since it is
applicable to any forward or backward data-flow analysis. Apart from prov-
ing that our restructuring process is correct, we also show that restructuring
is effective in that it necessarily leads to more optimization opportunities.

Furthermore, the framework handles the trade-off between the increase in
data-flow precision and the code size increase inherent in the restructuring.
We show that determining an optimal restructuring is NP-hard, and propose
and evaluate a greedy heuristic.

The framework has been implemented in the Scale research compiler,
and instantiated for the specific problems of Constant Propagation and Live-
ness analysis. On the SPECINT 2000 benchmark suite we observe an av-
erage speedup of 4% in the running times over Wegman-Zadeck conditional
constant propagation algorithm and 2% over a purely path profile guided
approach for Constant Propagation. For the problem of Liveness analysis,
we see an average speedup of 0.8% in the running times over the baseline
implementation.

3

Acknowledgements

First of all, I would like to thank Prof. Govindarajan for his guidance and
infinite patience. I would also like the thank Prof. Uday Khedker for his
timely discussions.

I would also like to thank, in order of appearance, Mangesh, Kaushik,
Govind, GVSK, Rajini, Mani, Subhajit, Rajesh, Rajan, Kapil, Nandu, Sujit,
Ganesh, Girish, Santosh, Mrugesh, Sripathi, Abhishek,. . ..

Finally, I would like to thank my family for their support and encourage-
ment.

4

Chapter 1

Introduction

Compiler advances double computing power
every 18 years.

Proebsting’s Law
Todd Proebsting

-“Hey! You! Why do you keep scratching
yourself, eh?”
-“Because no one else knows where it itches”

The Benny Hill Show
Benny Hill

It is becoming increasingly difficult to get performance improvement using
compiler optimizations, as epitomized by Proebsting’s Law [18]. But devel-
opers still want that extra 5-15% improvement in the running times of their
applications, and compiler optimizations are a safer alternative to manual
optimizations carried out by developers which might introduce errors [19].

Data-flow analysis [1] is an integral part of any aggressive optimizing
compiler. Information gathered using data-flow analysis is used in code op-
timizations such as constant propagation, dead-code elimination, common
sub-expression elimination, to name a few. Data-flow analysis uses a finite
abstraction of the program states and involves computing a fixed-point solu-
tion for a set of equations obtained from the control-flow graph of the pro-
gram. The results of this analysis are used to guide compiler optimizations.
Thus, the analysis should be safe in order for the resulting optimizations to
be safe.

Imprecision in data-flow analysis leads to a reduction in optimization op-
portunities. The loss of data-flow precision occurs due to the approximation
or merging of differing data-flow facts along incoming edges of a control-flow
merge. In the traditional formulation of data-flow analysis, the control-flow

5

graph of the program does not change.
In this thesis, we present a new framework to overcome this impreci-

sion. We initially perform data-flow analysis to determine those control-flow
merges that cause the loss in data-flow analysis precision, which we call
Destructive Merges. The control-flow graph (CFG) of the program is then
restructured to remove the effects of such destructive merges. Performing
data-flow analysis on the resulting restructured graph gives more precise re-
sults, and effectively eliminates the destructive merges. This leads to more
optimization opportunities in the resulting CFG. Thus, we see that we use
the results of an initial data-flow analysis to restructure the CFG and improve
the precision of the data-flow analysis on the resulting CFG 1.

The framework presented in this thesis is simple and clean, and uses
the familiar notion of product automata [13] to carry out the restructuring
transformation. Further, the framework is general since it can be instantiated
to any forward or backward data-flow analysis. This clean formulation allows
us to show that the restructuring is correct, in the sense that the original
and restructured CFGs are equivalent. Also, we prove that the restructuring
is profitable in that it necessarily leads to more optimization opportunities
in the restructured CFG.

The framework we develop is not only applicable to all forward data-flow
analysis such as constant propagation, points-to analysis but also to back-
ward data-flow analysis such as liveness and anticipatability. We believe that
a compiler writer would benefit from an approach based on sound theorotical
guarantees which is clean and simple to implement.

The restructuring inherently entails an increase in code size due to code
duplication i.e., the increase in precision comes at the cost of an increase in
code size. Furthermore, we show that determining an optimal restructuring
is NP-Hard and, hence, propose a greedy heuristic for restructuring. Our
framework explicitly handles the trade-off between precision and code size
increase and also makes use of low-cost basic-block profile information.

We have implemented the proposed framework in the Scale research com-
piler [21] and instantiate it with the specific problem of Constant Prop-
agation and Liveness analysis [1]. We compare our technique with the
Wegman-Zadeck conditional constant propagation algorithm [25](Base) and
with a purely path profile-guided restructuring technique [2](HPG). On the
SPECINT 2000 benchmark suite [22], our technique exposes, on an average,
3.5 times more dynamic constants as compared to the HPG technique. Fur-
ther, we observe an average speedup of 4% in the running times over Base
and 2% over the HPG technique. On the other hand, for Liveness analysis

1Hence, the Benny Hill quote!

6

we find that our approach gives an average speedup of 0.8% with an average
code size increase of 15%.

Contributions

These are the main contributions of this thesis.

• The framework can be instantiated to any forward or backward data-
flow analysis.

• The restructuring algorithm seamlessly handles complex control flows
in a program like nested loops, switch cases and so on.

• We provide provable guarantees about correctness of the algorithm.
Furthermore, we guarantee an increase in optimization opportunities
in the restructured program.

• We prove that obtaining the optimal restructured program is NP-Hard
and propose heuristics to solve the problem efficiently.

• The framework has been implemented in the Scale compiler and is
found to be better than a purely profile driven approach.

Thesis Outline

The rest of the thesis is organised as follows:

Chapter 1 Preliminaries In this chapter we introduce the notations
used in the rest of thesis. Specifically, we define out notion of
destructive merges. We also provide an algorithm which provides
an overview of our approach.

Chapter 2 Transformation In this chapter, we describe our restructur-
ing transformation for both forward and backward analysis.

Chapter 3 Trade-off Since our approach inherently entails an increase
in code size, we have to deal with the trade-off between the in-
crease in precision and increase in code size. In this chapter, we
prove that getting the optimal restructured graph is NP -Hard
and explain a greedy algorithm to tackle this problem.

7

Chapter 4 Related Work This chapter provides an overview of the re-
lated literature pertaining to improving data-flow analysis preci-
sion. Specifically, it discussses the Hot Path Graph approach

Chapter 5 Experimental Results Having explained the theoretical frame-
work, we show our empirical results for the specific problems of
Constant Propagation and Liveness analysis.

Chapter 6 Conclusions and Future Directions We suggest further di-
rections in which this approach can be extended and conclude the
thesis.

8

Chapter 2

Preliminaries

I can go with the flow,
But don’t say it doesn’t matter, matter
anymore.
I can go with the flow,
Do you believe it in your head?

Go With The Flow
Queens Of The Stone Age

In this chapter, we introduce the notations used in the rest of the thesis.
We start with basic definitions of control flow graphs followed by definitions of
both backward and forward data-flow analysis. Using these notions we define
destructive merges, a concept which plays a central part in our approach.
Finally, we discuss concepts from automata theory which are used to carry
out the restructuring.

2.1 Control-flow graphs

Definition 1. (Simple Graph) A simple graph is a graph that does not
have more than one edge between any two vertices and no edge starts and
ends at the same vertex.

Definition 2. (Control Flow Graph) A control flow graph (CFG)
G = (N, E, start, end) is a simple directed graph (N, E) where

• the nodes N represent program statements of a function,

• the edges E represent possible control flow between program statements,

• the start node has no incoming edges and all nodes are reachable from
the start node

9

• end node has no outgoing edges and the end node is reachable from all
other nodes.

For simplicity of exposition we consider the nodes to be individual pro-
gram statements, but they could also be basic blocks.

Let pred(n) denote the set of control-flow predecessors of a node n in the
CFG, and succ(n) denote the set of control-flow successors of a node n in
the CFG. By definition, pred(start) = ∅, and succ(end) = ∅.

Definition 3. (Control Flow Paths) A path in a control-flow graph
is a sequence of nodes or edges. As is usually assumed in data-flow analysis,
all possible paths in the CFG are considered to be feasible.

Definition 4. (Reachable Nodes) Given a node n reachable nodes i.e.
reachable nodes(n) is the set of nodes reachable from node n along some
path in the CFG.

Definition 5. (Generalized Post-dominator Set) A set of edges W
post-dominate vertex v, i.e. postdom(v) = W iff the following two conditions
are met:

1. all paths from the vertex v to the end node contain some edge w ∈ W ;
and

2. for each edge w ∈ W , there is at least one path from vertex v to the
end node which contains w and does not contain any other edge in W .

Example. Figure 2.1 shows the control-flow graph G.

pred(start) = ∅, succ(end) = ∅,

pred(D) = {B, C}, succ(D) = {E, F},
postdom(A) = {(A, B), (A, C)}, postdom(D) = {(D, E), (D, F)}.

2

Definition 6. (Reverse Graph) Given a simple directed graph G , the
Reverse Graph is a graph in which the direction of all edges have been re-
versed.

Definition 7. (Backward Reachable Nodes) Given a node n in CFG
G, backward reachable nodes i.e. backward reachable nodes(n) is the set
of nodes reachable from node n along some path in the reverse graph of CFG
G.

10

Figure 2.1: Control Flow Graph G.

Figure 2.2: The Reverse Graph R corresponding to the CFG G in Figure 2.1

11

Example. Figure 2.2 shows the reverse graph R of the CFG in Figure 2.1.
In graph R, reachable nodes(D) = {start, A,B,C, D}.
Hence, in graph G, backward reachable nodes(D) = {start, A,B,C, D}.

2

The program statements in a CFG usually consist of conditional state-
ments such as if statements, and assignment statements. We will also make
use of assume statements in our control-flow graphs. An assume statement
takes a predicate, say p, as an argument. An assume statement adds an as-
sumption about the predicate expression. For example, assume(y < 3) would
restrict y to the values less than 3 in all subsequent computation. Control can
never go past the assume statement if the predicates evaluates to false (F).
If the predicate p evaluates to true (T), then the program continues. But in
case the predicate cannot be evaluated then we effectively assume that the
predicate is true and continue. This might happen if the variables involved
in the assume have not been assigned to. Thus,assume statements control
the flow of the program but do not modify the program state. These assume
statements are commonly seen in work related to verification techniques, but
we will find them useful when discussing backward analysis.

Such assume statements can replace if statements, viz.

if(e) then A; else B;

can be written as

if(∗) then assume(e); A; else assume(¬e); B; .

Though at first this might seem nondeterministic, it is easy to still main-
tain deterministic execution since the assume statements here are along the
immediate successors of the if statement.

The predicate of the assume statement seen along an edge is called the
edge predicate for the edge.

Example. Figure 2.3 shows the CFG G of Figure 2.1 with the if state-
ment if (z > 1) at node A are replaced by corresponding assume statements
assume(z > 1 = T) and assume(z > 1 = F) along outgoing edges (A, B)
and (A, C) respectively.
edge predicate((A, B)) = (z > 1 = T), (edge predicate((A, C)) = (z >
1 = F)

2

12

Figure 2.3: The CFG G of Figure 2.1 in which the if statements at nodes A
and D are replaced by corresponding assume statements along their outgoing
edges.

2.2 Data-flow Analysis

Data-flow analysis [1] is a static analysis technique used to glean information
about the program as a whole and it’s possible behaviors. It forms the core of
any aggressive compiler optimization framework. It is also used extensively
in program understanding and verification tools.

Any data-flow anlysis should be safe i.e. it should be conservative and
over-approximate the runtime behaviour of the program. This ensures that
the code transformations and optimization carried out using the analysis
results do not change the semantic meaning of the program. A typical over-
approximation which is carried out is that all control-flow paths in the CFG
are assumed to be possible, even if some are infeasible. An analysis which
does not consider a control-flow path which could be taken at runtime is
deemed unsafe.

The Control Flow Graph (CFG) is the principle abstraction of the pro-
gram control-flow over which data-flow analysis operates. In terms of the
actual information, data-flow analysis operates over a finite abstraction of
the possible program states, which is usually represented as a complete semi-
lattice. We assume that the data-flow information is associated with the in

13

and out of a node, where for a given node n, in is the program point im-
mediately preceding the node n, and out is the program point immediately
following the node n. Data-flow information is collected by setting up a sys-
tem of equations which relate information at various points in a program
and finding the fixed point of these equations. For example, the data-flow
information at in of a node is related to that at the out of it’s predecessor
node.

We begin with some common concepts of data-flow analysis adopted
from [1, 2].

Definition 8. (Data-flow Analysis Framework) A Data-flow analy-
sis framework F is a tuple (L,∧, F,>,D) where:

• L is a complete semilattice with the meet operation ∧.

• F is a set of monotonic transfer functions from L to L.

• > is the top element in L, satisfying the law >∧µ = µ for all µ in L,

• D is the direction of analysis, either forward or backward.

Definition 9. (Data-flow Problem) A data-flow problem P is a tuple
(G,F , lr, M) where:

• G = (N, E, start, end) is a control-flow graph (CFG),

• F is a data-flow analysis framework,

• ls ∈ L is the data-flow fact associated with start,

• M : N → F maps the nodes of G to the functions in F of F .

M can be extended to paths by composition i.e.

M([n1, n2, . . . , nk])
def
= M(nk) ◦M(nk−1) ◦ · · · ◦M(n2) ◦M(n1)

The following definitions assume that the direction of the analysis is for-
ward, and can be naturally extended to backward analysis.

Definition 10. (Data-flow Solution) A solution S of P is a map
S : N → L such that, for any path p from start to node u, S(u) � (M(p))(ls).

The solution is associates data-flow facts with the in of the node n, which
we represent as in dff(n). The corresponding data-flow facts at the out of a
node n, i.e. out dff(n), can be determined by applying the node’s transfer
function to in dff(n). Thus,

out dff(n)
def
= M(n)(in dff(n)).

14

Definition 11. (Fixed Point Solution) A fixed point Ŝ of P is a map

Ŝ : N → L such that Ŝ(start) � ls) and, if e is an edge from node u to node

v, Ŝ(v) � (M(u))(Ŝ(u)).

Definition 12. (Maximum Fixed Point Solution) A Maximum Fixed
Point (MFP) Solution S of P is a solution of P such that, for any fixed point

Ŝ, Ŝ(u) � S(u) for all u ∈ V .

The MFP solution can be computed by general iterative algorithms [1, 15].

2.2.1 Constant Propagation

In the Constant Propagation problem we are interested in knowing whether
a variable x always has a constant value at a program point. The use of the
variable at that point can then be replaced by that constant value. Dead-code
elimination, common sub-expression elimination, redundancy elimination are
some of the other analysis which benefit from precise constant propagation
analysis.

Specifically, in the Constant Propagation data-flow analysis framework C,
a variable x can have any one of the three data-flow facts associated with it:
(1) >, which means that nothing has been asserted about x, (2) ci, which
means that x has a constant value, (3) ⊥, which means that x has been
determined to not have a constant value.

L can be thought of as a vector of data-flow values, one component for
each variable in the program. Given ` ∈ L and a variable x, we will use
the notation `[x] to denote the data-flow value associated with x in `. For
example, S(u)[x] represents the data-flow value of variable x at node u ∈ V
given a solution S to the Constant Propagation problem C.

Example. Consider Figure 2.4. We would like to know whether the use
of the variable x at node G can be replaced by a contant value. Constant
Propagation analysis would ascertain that this cannot be done.

2

2.2.2 Liveness Analysis

A variable is said to be live at a particular point in a program if there is a
path to the exit along which its value may be used before it is redefined. It
is Not live if no such path exists. The values live (L) and not live (N) form
a lattice where > = N and ⊥ = L. Liveness analysis is a backward analysis.

15

Figure 2.4: A simple acyclic program. Node D is a destructive merge. The
use of variable x at node G cannot be replaced by a constant.

2.2.3 Anticipatability Analysis

An expression’s value is said to be anticipatable on entry to block i if every
path from that point includes a computation of the expression and if placing
that computation at any point on these paths produces the same value.

2.3 Destructive Merge

2.3.1 Forward Analysis

Central to our approach, is the notion of a destructive merge. Intuitively,
a destructive merge is a control-flow merge where data-flow analysis loses
precision. The notion of precision is governed by the partial-order of the
lattice of the data-flow problem.

Definition 13. (Destructive Merge) For a given forward data-flow
problem and its corresponding solution, a control-flow merge m is said to be
a Destructive Merge if ∃p ∈ pred(m) s.t. in dff(m) ≺ out dff(p).

Definition 14. (Destroyed Data-flow Facts) Given a destructive
merge m, a data-flow fact d is said to be a Destroyed Data-flow Fact , i.e.

16

Figure 2.5: For the problem of Constant Propagation, (a)-(b) show two de-
structive merges and (c)-(d) illustrate two control-flow merges which are not
destructive. c1 and c2 are two differing constants, while ⊥ represents not-
constant.

d ∈ destroyed dff(m), iff d ∈ out dff(p), where node p ∈ pred(m), and
in dff(m) ≺ d.

Example: For the problem of Constant Propagation, Figure 2.5 illustrates
the different scenarios possible at a control-flow merge. Nodes D1 and D2
are destructive, while nodes N1 and N2 are not.

More specifically, in Figure 2.4 node D is a destructive merge since
in dff(D) = {⊥}, while out dff(B) = {x = 1}. Further,

destroyed dff(m) = {x = 1, x = 2}.

2

2.3.2 Backward Analysis

The above definitions can be easily extended to Backward data-flow analy-
sis. Instead of control-flow merges, destructive merges for backward analysis
defined over control-flow forks.

Definition 15. (Destructive Merge) For a given backward data-flow
problem and its corresponding solution, a control-flow fork m is said to be a
Destructive Merge if ∃p ∈ succ(m) s.t. out dff(m) ≺ in dff(p).

17

Figure 2.6: For the problem of Liveness Analysis, (a) shows a destructive
merge and (b)-(c) illustrate two control-flow merges which are not destruc-
tive.

Definition 16. (Destroyed Data-flow Facts) Given a destructive
merge m, a data-flow fact d is said to be a Destroyed Data-flow Fact , i.e.
d ∈ destroyed dff(m), iff d ∈ in dff(p), where node p ∈ succ(m), and
out dff(m) ≺ d.

Example. For the problem of Liveness Analysis, Figure 2.6 illustrates the
different scenarios possible at a control-flow fork. Node D1 is destructive,
while nodes N1 and N2 are not.

More specifically, in Figure 2.4 node D is a destructive merge since
out dff(D) = {x = L}, while in dff(B) = {x = N}. Further,

destroyed dff(m) = {x = L}.

2

2.4 Automata Theory

As we will see our restructuring algorithm uses many concepts from automata
theory, which we introduce next.

18

Definition 17. (Deterministic Finite Automaton) A deterministic
finite automaton is defined by the tuple (Q, Σ, δ, s, F) where

• Q is a finite of set, the elements of the set are called states,

• Σ is a finite set, the input alphabet,

• s ∈ Q is a unique start state,

• F ⊆ Q, the elements of F are called the final or accept states,

• δ : Q × Σ → Q is the transition function. Intuitively, δ is a function
that tells which state to move to in response to an input.

Unless mentioned otherwise, all finite automata discussed in this thesis
are deterministic.

Definition 18. (Multistep Transition Function) Given a finite au-

tomaton M(Q, Σ, δ, s, F) we defined the multistep transition function δ̂ :
Q× Σ∗ → Q inductively on the length of x

δ̂(q, ε)
def
= q,

δ̂(q, xa)
def
= δ(δ̂(q, x), a).

The function δ̂ maps a state q and a string x to a new state δ̂(q, x). Using

δ̂ we can now define the language of a finite automaton.

Definition 19. (Language of Finite Automaton) The set or language
accepted by a finite automaton M is the set of strings accepted by M and is
denoted L(M) :

L(M)
def
= {x ∈ Σ∗ | δ̂(s, x) ∈ F}.

There are many operations which can be defined over finite automata.
The one which we are most interested in is the product operator ×.

Definition 20. (Product Automaton) Given two finite state automata
M1(Q1, Σ, δ1, s1, F1) and M2(Q2, Σ, δ2, s2, F2), the product of M1 and M2 de-
noted by M1×M2 is defined as the finite state automaton M3(Q3, Σ, δ3, s3, F3)
where

• Q3 = Q1 ×Q2 = {(p, q) | p ∈ Q1and q ∈ Q2},

• F3 = F1 × F2 = {(p, q) | p ∈ F1and q ∈ F2},

• s3 = (s1, s2),

• δ3 : Q3 × Σ→ Q3, the transition function is defined as

δ3((p, q), a) = (δ1(p, a), δ2(q, a))

19

Figure 2.7: Figure illustrating the product operation for finite automata.

Example. Figure 2.7 shows two automata A1 and A2 whose alphabet is
Σ = {rain, sun}. The start and accept state for A1 is state dry, while the
start state for A2 is sleep and accept state is play. The transition function is
shown graphically in the figure.

The product automaton A3
def
= A1 × A2 is also shown.

2

Further, since the product operation is both associative and commutative,
we can define the product operator for k in a natural fashion as follows:

Definition 21. (Generalized Product Automaton) The product of k
finite state automata M1(Q1, Σ, δ1, s1, F1), M2(Q2, Σ, δ2, s2, F2), . . . ,Mk(Qk, Σ, δk, sk, Fk)
denoted by M1 × M2 × . . . × Mk is defined as the finite state automaton
Mp(Qp, Σ, δp, sp, Fp) where

• Qp = Q1 ×Q2 × . . .×Qk = {(q1, q2, . . . , qk) | qi ∈ Qi, 1 ≤ i ≤ k},

• Fp = F1 × F2 × . . .× Fk = {(q1, q2, . . . , qk) | qi ∈ Fi, 1 ≤ i ≤ k},

• sp = (s1, s2, . . . , sk),

• δp : Qp × Σ→ Qp, the transition function is defined as

δp((q1, q2, . . . , qk), a) = (δ1(q1, a), δ2(q2, a), . . . , δk(qk, a))

Though simple to understand and construct, the product operator is ex-
tremely useful and enjoys the following property:

Lemma 1. (Intersection Lemma) Consider two automata A1 and A2.
If P = A1 × A2, then

L(P) = L(A1) ∩ L(A2).

20

Product(M1(Q1, Σ, δ1, s1, F1), M2(Q2, Σ, δ2, s2, F2), . . . Mk(Qk, Σ, δk, sk, Fk))

// The start node of product automaton composed of start nodes of input automata.
1 sP ← (s1, s2, . . . , sk)

// The states of the product automaton; initially only contains the start state.
2 QP ← sP

// The final nodes of the product automaton.
3 FP ← F1 × F2 × . . .× Fk

// Compute the transition function for the product automaton.
// The transition function of the product automaton; initially empty.

4 δP ← ∅
// Worklist of states; initially contains the start state.

5 WorkList W ← sP

// Do while the worklist is not empty.
6 While W 6= empty
7 do
8 state← get(W) // Pop the next state from the worklist.
9 (q1, q2, . . . , lk)← state

// For each letter in the input alphabet, compute the next state.
10 Foreach a ∈ Σ
11 do

// Get the next state.
12 next state← (δ1(q1, a), δ2(q2, a), . . . , δk(qk, a))

// Check if this is a new state.
13 If(next state /∈ QP)
14 then // Add the new state to the set of states.
15 QP ← QP ∪ { nextstate }

// Push the new state onto the worklist.
16 put(W, next state)

// Add the new transition to the transition function.
17 δP ← δP ∪ { (state, next state) }
18 return MP (QP , Σ, δP , sP , FP)

Figure 2.8: Algorithm to compute the product automaton

21

Proof. We refer the reader to [13] for the proof.

Definition 22. (Control Flow Automaton) The Control Flow Au-

tomaton Ĝ corresponding to a CFG G(N, E, start, end) is finite automaton
(Q, Σ, δ, s, F) where

• the set of states Q
def
= N ,

• the input alphabet Σ = E,

• the start state s
def
= start,

• the final states F = {end},

• the transition function δ : Q× Σ→ Q is defined as

δ(p, a)
def
= q iff node p is connected to q by the edge a in G.

This natural correspondence between control-flow graphs and finite au-
tomaton allows us to use the concepts in automata theory described in Sec-
tion 2.4. When the context is clear, we will use G to represent both the CFG
G and the control flow automaton Ĝ.

Definition 23. (CFG Equivalence) We say that the two CFGs G1 and

G2 are equivalent, i.e. G1 ≡ G2, if the languages accepted by Ĝ1 is equal to
language accepted Ĝ2, i.e., L(Ĝ1) = L(Ĝ2).

Such a notion of equivalence suffices since the restructuring only dupli-
cates nodes and does not change the semantics of the statements correspond-
ing to a node.

2.5 Overall Algorithm

Figure 2.5 presents an overview of our approach. Central to our approach
is the notion of a destructive merge. Having performed data-flow analysis,
we determine which data-flow merges are destructive. This was explained in
Section 2.3. Since our approach implicitly entails an increase in code size,
we need to determine the best set of destructive merges to eliminate. We
tackle this issue in Chapter 4. Having determined which destructive merges
have to eliminated, the Split Automaton is constructed. Definition 33 tells us
how to do this for Forward analysis, while Definition 44 applies for Backward
analysis.

22

Split(G, k)
1 Perform Data-flow analysis

//set of destructive merges
2 DM ← ∅
3 Foreach merge m
4 do
5 If m is destructive
6 then
7 DM ← DM ∪ {m}
8 Foreach merge m ∈ DM
9 Calculate fitness (m)

10 Foreach k fittest non-zero merge mi

11 do
12 Ai = split automaton(mi)
13 // Let A1, A2, ..., Ak be the split automata
14 S ← split graph (G, A1, A2, ..., Ak)
15 Perform Data-flow analysis on S
16 Optimize S

Figure 2.9: The Split Algorithm

23

The actual restructuring transformation is carried out using these Split
Automaton. Definition 35 defines this for Forward analysis, while Defini-
tion 46 is to be used for Backward analysis. We show that the restructured
graph is equivalent to the original.

Finally, data-flow analysis is carried out on this restructured graph and
the final program is optimized.

24

Chapter 3

The Transformation

Paradoxical as it seemed, the Master always
insisted that the true reformer was one who was
able to see that everything is perfect as it is -
and able to leave it alone.

One Minute Wisdom
Anthony de Mello

In this chapter we describe the transformation applied to a CFG to elim-
inate a destructive merge. We will first consider forward data-flow analysis,
and then extend the approach to handle backward data-flow analysis. Fur-
ther, in order to explain the concepts clearly, specific data-flow analysis will
be used, before stating the general framework.

We start with a program P and a data-flow analysis D. We have already
seen that destructive merges lead to loss of data-flow precision and, hence,
result in fewer optimization opportunities. We wish to transform the pro-
gram P by altering the control-flow to get an equivalent program P ′ in order
to eliminate the effects of such destructive merges. Performing data-flow
analysis on the program P ′ gives more precise results. The transformation
described is clean and general enough to be applied to any data-flow analysis.

This chapter does not explicitly deal with the trade-off between data-
flow precision and code size. As we will see in Chapter 4, the increase in
code size is determined by the choice of destructive merges which are to
be eliminated. For the time being, we assume that the set of destructive
merges to be eliminated are given and defer the description of the algorithm
to determine this set to Chapter 4. We first describe the solution for forward
data-flow analysis, and in particular, we use the specific problem of Constant
Propagation (Section 2.2.1) for explanatory purposes before generalising. In
Section 3.1.1, we describe an obvious Näıve solution to the problem. As we

25

Figure 3.1: Simple acyclic program P1. Node D is a destructive merge. Use
of variable x at node G cannot be replaced by a constant.

will see, this solution is far from satisfactory in terms of its efficiency and
increase in code size. We then present our approach and in Section 3.1.2
answer the question of which nodes are duplicated in our approach. Nodes
which are not required to be split in order to improve precision are not
selected. In Section 3.1.3, we see how these nodes are duplicated and how
the CFG is split in order to ensure that the resulting CFG is equivalent and
that the data-flow precision improves.

3.1 For Forward Analysis

3.1.1 The Näıve Solution

We illustrate the Näıve approach using a specific example and compare it to
our approach. Consider the program P1 shown in Figure 3.1. Node D is a
destructive merge since the data-flow facts {x = 1} and {x = 2} are merged
to get the data-flow fact {x = nc}. Thus, the use of variable x at node G
cannot be replaced by a constant. We wish to improve the data-flow precision
by restructuring the control-flow graph. The first approach is to duplicate
the destructive merge. Thus, consider the following Näıve solution: as long
as there exists a destructive merge in the CFG, duplicate the destructive
merge. In the transformed graph, there is one copy of the destructive merge
for each incoming edge, while the outgoing edges of the copies remain the
same as the original. According to this approach, node D is duplicated, and
we now get two nodes D1 and D2, one for each of the incoming edges from

26

Figure 3.2: Simple acyclic program of Figure 3.1 with node D duplicated.
Nodes E and F are destructive merges. Use of variable x cannot be replaced
by a constant.

nodes B and C respectively. The outgoing edges of nodes D1 and D2 are
the same as that of node D. The resulting program is shown in Figure 3.2.

In this figure, the destructive merge at node D is removed. Yet, we
still cannot replace the use of variable x at node G. The reason for this
is easy to understand. We see that in Figure 3.2, nodes E and F have
become destructive merges. The destructive merge at node D in Program
P1 (Figure 3.1) has simply shifted to nodes E and F in Figure 3.2 as a result
of duplicating node D.

If we continue duplicating destructive merges as per the Näıve approach,
then we obtain the program in Figure 3.4. In this figure, the use of variable
x at nodes G1, G2, G3 and G4 can be replaced by constants 1, 1, 2 and 2
respectively.

Compared to this, our approach directly transforms the CFG of Figure 3.1
to that of Figure 3.5 in a single step. There are two reasons why our approach
is better than this Näıve approach.

• To identify destructive merges data-flow analysis needs to be performed.
Thus, in the Näıve approach, each time the CFG is restructured data-
flow analysis needs to be performed. In comparison, as we see, our
approach performs data-flow analysis only once to identify destructive
merges. Then in a single step, the CFG is transformed in such a way
that the data-flow precision is guaranteed to improve.

• The code size increase due to this Näıve approach might be unneces-

27

Figure 3.3: Näıve restructuring of the acyclic program of Figure 3.2. in
which nodes E and F are duplicated. Node G is a destructive merge and the
use of variable x cannot be replaced by a constant.

Figure 3.4: Näıve restructuring of the acyclic program P1 of Figure 3.1 No
destructive merges. Use of variable x at nodes G1, G2, G3 and G4 can be
replaced by constants.

28

Figure 3.5: Split Graph S1 corresponding to the acyclic program of Figure 3.1
constructed by our approach. No destructive merges. Use of variable x at
nodes G1 and G2 can be replaced by constants.

sary. In our specific example, only two copies of node G are sufficient
(and necessary) as seen in Figure 3.5. The Näıve approach has four
copies of node G. To further illustrate the code size increase, consider
the program template in Figure 3.6 which is a generalisation of the
program of Figure 3.1. The program consists of n control-flow merges
D1, D2,..,Dn. The Näıve approach would transform the program of
Figure 3.6 having θ(n) nodes to one having θ(2n) nodes as seen in Fig-
ure 3.7. Our approach would create a transformed CFG having θ(2n)
nodes as shown in Figure 3.8.

Thus, we see that such a Näıve approach fails to be efficient and leads to
unnecessary increase in code size. Of course, there are instances of programs
for which our approach and the Näıve approach would construct the same
restructured program. But, in general, our approach is better than this Näıve
approach.

3.1.2 Computing The Region Of Influence

Single Destructive Merge

In this section, we look at which nodes need to be duplicated in order to
improve data-flow precision, given a destructive merge. Consider program P2

29

Figure 3.6: Generalisation of acyclic program P1 of Figure 3.1 consisting of
n control-flow merges. Node D1 is a destructive merge. Use of variable x at
nodes Dn cannot be replaced by a constant.

in Figure 3.9, which is a slight variation of the program P1 in Figure 3.1. The
transformed graph S2 corresponding to program P2 is shown in Figure 3.10.
We will begin by examining programs P2 and S2 in greater detail in order
to explain how we obtained the Split Graph.

In program P2, node D is a destructive merge with data-flow facts {x = 2}
and {x = 1} merging to obtain the data-flow fact {x = nc}. The first point
to note is that if (somehow) the data-flow fact {x = 1} were to hold at node
D, then the use of variable x at node G can be replaced by the constant 1.
Thus, we see that in order to optimize node G, it is useful for data-flow fact
{x = 1} to hold at node D. This also holds for the data-flow fact {x = 2}.
On the other hand, it is not useful for the data-flow fact {x = nc} to hold
at node D. Hence, in program S2 in Figure 3.10 we see that at the copies
D1 and D2 of D, the data-flow facts {x = 1} and {x = 2} hold respectively.
Further, nodes H, I and J cannot be optimized even if the data-flow facts
{x = 1} or {x = 2} hold at node D. Thus, these nodes are not duplicated in
Program S2 in Figure 3.10. We say that these nodes are not influenced by
the destructive merge at node D. The nodes D, E, F , and G are called the
Region of Influence and are exactly those nodes which have multiple copies
in program S2.

30

Figure 3.7: The exponential blowup of code as seen when the Näıveapproach
is applied to the acylic program of Figure 3.1.

31

Figure 3.8: Result of applying the Split Approach to the acylic program of
Figure 3.1.

Figure 3.9: Simple acyclic program P2. Node D is a destructive merge. Use
of variable x cannot be replaced by a constant.

32

Figure 3.10: Split Graph S2 corresponding to the acyclic program of Fig-
ure 3.9 constructed by our approach. No destructive merges. Use of variable
x at nodes G1 and G2 can be replaced by constants.

Next, we formalise these concepts for a general forward data-flow problem.
The following definitions assume that we are given CFG and a data-flow
problem and a corresponding solution.

Definition 24. (Useful Data-flow Facts) For a given node n, a
data-flow fact is said to be a Useful Data-flow Fact, i.e. d ∈ useful dff(n),
iff data-flow fact d holding true at node n implies that the node n can be
optimized.

The above definition implicitly captures the interaction between a data-
flow analysis and the compiler optimization i.e. the client. It allows us to
abstract out the details of this relation by providing an oracle which knows
which data-flow facts enable the optimization for a particular program state-
ment. We can now generalise this notion of useful data-flow facts.

Definition 25. (Useful Data-flow Facts) Given nodes m and n, a
data-flow fact is said to be Useful Data-flow Fact for node n at node m, i.e.
d ∈ useful dff(m,n), iff data-flow fact d holding true at node m implies
that the node n can be optimized.

It is easy to see that Definition 24 is a special case of Definition 25 with
node m being the same node n.

33

Example. Consider the program in Figure 3.9.

useful dff(G) = {. . . , x = −1, x = 0, x = 1, x = 2, . . .},

useful dff(D, G) = {. . . , x = −1, x = 0, x = 1, x = 2, . . .}.

This is due to the fact that if the value of variable x were to be a constant
at node D, then it would remain a constant at node G. This would enable
us to optimize node G by replacing the use of variable x with a constant.

2

Definition 26. (Influenced Nodes) Given a destructive merge m, we
say a node n is influenced by the destructive merge m, i.e., n ∈ influenced nodes(m),
iff

destroyed dff(m) ∩ useful dff(m,n) 6= ∅.

Definition 27. (Revival Data-flow Facts) Given a destructive merge
m, a data-flow fact is said to be a Revival Data-flow Fact, i.e., d ∈ revival dff(m),
iff there exists a node n ∈ influenced nodes(m) such that

d ∈ destroyed dff(m) ∩ useful dff(m,n).

In other words, a node n is influenced by a destructive merge m when,
if one of the data-flow facts d which is destroyed by the node m were to
hold true at node m, then node n could be optimized. Intuitively, a node is
influenced by a destructive merge if eliminating the destructive merge can
enable the optimization of the node. Further, these are the only nodes which
can be optimized if the destructive merge is eliminated. The Revival data-
flow facts denote those data-flow facts which if they would hold true at the
destructive merge m would enable the optimization of some influenced node.

Example. Consider Figure 3.9,

influenced nodes(m) = {G},

destroyed dff(m) = {x = 1, x = 2},

useful dff(D, G) = {. . . , x = −1, x = 0, x = 1, x = 2, . . .},

revival dff(m) = {x = 1, x = 2}.

2

34

Figure 3.11: Schematic diagram illustrating reduction of Post Correspon-
dence problem for Theoreom 1.

Since the influenced nodes are the only nodes which can be optimized by
eliminating the destructive merge, we would like to determine the largest such
set of nodes. However, for the specific problem of Constant Propagation we
establish that determining whether a node n belongs to influenced nodes(m)
for a destructive merge m is undecidable in general.

Theorem 1. (Influence Theorem) For the problem of Constant Prop-
agation, given a node n and destructive merge m determining
if n ∈ influenced nodes(m) is undecidable.

Proof. The proof follows from the undecidability of Constant Propagation for
programs with loops even if all branches are considered to be non-deterministic
as described in [16], and originally stated by Hecht [11] and by Reif and
Lewis [20]. The proof is based on the reduction of the Post correspondence

35

problem [13]. We show that a node n ∈ influenced nodes(m) iff the Post
correspondence problem is not solvable.

A Post correspodence system consists of pairs of strings (u1, v1), . . . , (uk, vk)
with (ui, vi) ∈ {0, 1}∗. The Post correspondence problem (PCP) consists of
determining whether there exists a sequence i1, i2, . . . , in, 1 ≤ ij ≤ k, such
that ui1 · . . . · uin = vi1 · . . . · vin , where · represents string concatenation. It
is well-known that the PCP is undecidable [13].

Figure 3.11 illustrates the reduction. The variable x and y represent the
decimal representation of strings over {0, 1}∗. Node D is a destructive merge
with destroyed dff(D) = {a = 1}. Further, for the assignment statement
b = r at node L, useful dff(L) = {. . . , r = −1, r = 0, r = 1, r = 2, . . .}.
Using Definition 26, node L ∈ influenced nodes(D) iff destroyed dff(D)∩
useful dff(D, L) 6= ∅. Thus, we would like to know whether the data-flow
fact {a = 1} belongs to the set useful dff(D, L). In other words, to deter-
mine whether node L ∈ influenced nodes(D) we have to show that variable
r has a constant value at node L if the data-flow fact {a = 1} holds true at
node D.

In Figure 3.11, for each pair of the correspondence system, there is a
branch of the loop which appends strings ui and vi to x and y, respectively.
This is achieved by left shifting the digits of x and y by lg(ui) and lg(vi) digits
first, where lg(ui) and lg(vi) are the lengths of the decimel representation of
ui and vi respectively. Then ui and vi are added.

At the exit of the loop, the value of the expression (x − y) will always
be non-zero if the Post correspondence problem has no solution. In this
case the expression 1 div ((x − y)2 + 1) always evaluates to 0, where div

represents integer division. On the other hand, if the Post correspondence is
solvable, this expression can evaluate to 1. Thus, r is a constant with value
0 at node L iff the Post Correspondence problem is not solvable. The reason
for the assignment r = 0 at node K is to exclude the case in which r takes
the constant value 1, which occurs when the Post correspondence system is
universally solvable.

Thus, we have shown that if the dataflow fact {a = 1} holds at node D
then variable r is a constant at node L iff the Post correspondence problem
is not solvable. It follows that, in general, determining whether a node n ∈
influenced nodes(m), where m is a destructive merge, is undecidable for
the problem of Constant Propagation.

As we see in the Section 3.1.3, our restructuring is guaranteed to improve
data-flow precision and optimize the nodes which are influenced by the de-
structive merge. The above theorem implies that we cannot determine all

36

Figure 3.12: Schematic diagram showing the Region of Influence for a de-
structive merge m.

nodes which are influenced by a destructive merge. If we include a node which
is not actually influenced by the destructive merge in influenced nodes(m),
then the restructuring will not enable any optimizations. Thus, the corre-
sponding increase in code size will be unnecessary. Hence, in practice, we
under-approximate the set of influenced nodes. In particular, for Constant
Propagation, if the data-flow fact for variable x is destroyed at merge node
m, then the uses that are reachable only along paths from node m that do
not contain any definitions of variable x are influenced by the destructive
merge m. This set is an under-approximation and there might be nodes
which are influenced by the destructive merge m and not be included in the
set influenced nodes(m) which is actually determined.

Definition 28. (Region of Influence) Given a destructive merge m,
a node n is said be in the Region of Influence, i.e., n ∈ RoI(m), iff n ∈
reachable nodes(m) and there exists a node u ∈ influence nodes(m) and
u ∈ reachable nodes(n).

Figure 3.12 shows a schematic diagram showing RoI(m) for the destruc-
tive merge m.

Having determined the set of influenced nodes, the Region of Influence
consists of those nodes which are sufficient and necessary to be duplicated in

37

order to improve precision and optimize the influenced nodes.

Example. In Figure 3.9, node D is a destructive merge.

influenced nodes(D) = {G},

reachable nodesD = {D, E, F, G, H, I, J},

G ∈ reachable nodes(D), G ∈ reachable nodes(E),

G ∈ reachable nodes(F), G ∈ reachable nodes(G),

RoI(m) = {D, E, F, G}.

2

Multiple Destructive Merges

In the previous section, we dealt with the situation where we were given
a single destructive merge to eliminate. In practice, we will have a set of
destructive merges M = {m1, m2, . . . ,mk} which are to be eliminated. As
mentioned earlier, the method to determine this set will be given in Chap-
ter 4. In this section, we extend the concepts of the previous section to
handle multiple destructive merges viz. we determine which nodes are to be
duplicated in order to improve data-flow precision.

Definition 29. (Influenced Nodes) Given a set of destructive merges
M = {m1, m2, . . . ,mk}, the set of Influenced Nodes is defined as

influenced nodes(M) =
⋃

m∈M

influenced nodes(m)

Definition 30. (Region of Influence) Given a set of destructive merges
M = {m1, m2, . . . ,mk}, the Region of Influence corresponding to M is de-
fined as

RoI(M) =
⋃

m∈M

RoI(m)

Extending the definitions to handle multiple destructive merges is straight
forward. A node n belongs to influenced nodes(M) iff it is influenced by at
least one destructive merge m ∈M. Similarly, a node n belongs to RoI(M)
iff it belongs to the Region of Influence of at least one destructive merge
m ∈M.

38

Figure 3.13: Program W1 which violates the Equivalence constraint, but not
the Efficacy constraint. The outgoing edges of node D1 are incorrect.

3.1.3 The CFG Restructuring

We continue with our example program P2 shown in Figure 3.9. Having
identified which data-flow facts should hold at node D in order to optimize
node G viz., useful dff(D, G), and which nodes should be duplicated viz.
RoI(D), we will explain the actual control-flow transformation.

There are two main constraints such a transformation should satisfy.

• Equivalence. The original and transformed programs should be equiv-
alent.

• Efficacy. The transformation should guarantee that the improvement
in data-flow precision leads to optimization opportunities.

The program W1 of Figure 3.13 illustrates an incorrectly transformed
program which violates the equivalence constraint. This is because the path
B → D → F → G → present in Program P2 shown in Figure 3.9 is
not present in Program W1. In Program P2, node D has outgoing edges to
nodes E and F , while node D1 in Program W1 has only one outgoing edge
to node E1.

Program W2 in Figure 3.14 satisfies the equivalence constraint but vio-
lates the efficacy constraint. This transformation does not expose new opti-

39

Figure 3.14: Program W2 which violates the Efficacy constraint, but not the
Equivalence constraint. Nodes G1 and G2 are destructive merges and the
use of variable x cannot be replaced by a constant.

mization opportunities, since nodes G1 and G2 are destructive merges and
the uses of variable x cannot be replaced by constants. But the equivalence
constraint is not violated.

Definition 31. (Kill Edges) Given a Region of Influence for a destructive
merge m, an edge e = (u, v) is a Kill Edge, i.e. e ∈ kill edges(m), iff
u ∈ RoI(m) and v /∈ RoI(m).

In other words, Kill Edges are those edges whose source node is in the
Region of Influence and target node is not in the Region of Influence for a
destructive merge m.

Definition 32. (Revival Edges) Given a Region of Influence for a de-
structive merge m, an edge e = (u, m) is said to be a Revival Edge, i.e.
e ∈ revival edges(m), iff

out dff(u) ∈ revival dff(m).

In other words, Revival Edges are those incoming edges of the destructive
merge which correspond to Revival Data-flow facts. Further, let d1, d2, . . . dk

be the k distinct Revival Data-flow facts for destructive merge m. We can

40

Figure 3.15: Revival and Kill Edges for a Region of Influence corresponding
to a destructive merge m.

partition the incoming edges of destructive merge m into k + 1 equivalence
classes R0, R1, . . . , Rk. An edge (u, m) ∈ Ri, 1 ≤ i ≤ k if out dff(u) = di,
and (u, m) ∈ R0 otherwise.

Figure 3.15 shows a schematic diagram illustrating the above concepts.

Example. In Figure 3.9,

out dff(B) = {x = 1}, out dff(C) = {x = 2},

revival dff(m) = {x = 1, x = 2},

revival edges(m) = {(B, D), (C, D)},

RoI(m) = {D, E, F, G},

kill edges(m) = {(G, H), (G, I)}.

2

Lemma 2. (Post-dominance Lemma) Given a destructive merge m,
the set of edges kill edges(m) post-dominate the node m.

Proof. The notion of generalized post-dominator set can be found in Defini-
tion 5.

We claim that all paths p from the node m to the end node can be written
as q · (u, v) · r where

1. subpaths q, r may be empty,

2. ∃w ∈ influenced nodes(m) s.t. w ∈ reachable nodes(u),

41

Figure 3.16: Illustrating a path p = q · (u, v) · r from destructive merge
m to the end node for Lemma 2. w1, w2 ∈ influenced nodes(m). w1 ∈
reachable nodes(u). w1, w2 /∈ reachable nodes(v).

3. @w ∈ influenced nodes(m) s.t. w ∈ reachable nodes(v),

4. subpath r does not contain any node w ∈ influenced nodes(m)

If we prove this claim, then it is easy to see from points 2 and 3 above that
the edge (u, v) is a Kill Edge, and it follows that all paths from destructive
merge m to the end node pass through a Kill Edge. We now prove the above
claim.

We define u to be the last node along path p such that
∃w.w ∈ influenced nodes(m)∧w ∈ reachable nodes(u). Subpath q is the
prefix of path p before this node u. Since all influenced nodes are reachable
from the destructive merge m such a node u always exists. If node m is
chosen as u then subpath q is empty. Having found node u, node v is simply
the successor of node u along the path p. Node v may be the end node, in
which case the subpath r is empty.

Our choice of node u also implies that the subpath r of path p does not
contain any node w ∈ influenced nodes(m)1. This proves the claim.

Armed with the above concepts we are now ready to define the Split
Automaton.

1 Recall ∀u, u ∈ reachable nodes(u).

42

Figure 3.17: The Split Automaton AD corresponding to destructive merge
D in Figure 3.9.

Definition 33. (Split Automaton) The Split Automaton Am corre-
sponding to a destructive merge m is a finite-state automaton defined as:

• the input alphabet Σ = E, the set of all edges in the CFG,

• a set of k + 1 states Q = {s0, s1, s2, . . . , sk},

• s0 ∈ Q is the initial and accepting state,

• the transition function δ : Q× Σ→ Q defined as
(si, e)→ sj, e ∈ Rj (Revival Transitions)
(si, e)→ s0, e ∈ kill edges(m) (Kill Transitions)
(si, e)→ si, otherwise (No Transition)

Intuitively, state si, 1 ≤ i ≤ k corresponds to Revival Data-flow fact di

and whenever an edge e ∈ Ri is seen, the Split Automaton makes a transition
to state si. We call this the Revival Transition. Further, whenever a Kill
edge is seen, the Split Automaton transitions to state s0. We call these the
Kill Transitions. In all other cases, the automaton remains in the same state,
and makes no transitions.

Example. Figure 3.17 shows the Split Automaton AD corresponding to
the destructive merge D in CFG P in Figure 3.9. Intuitively, whenever the
automaton is in state 1, data-flow fact {x = 1} holds, while in state 2 data-
flow fact {x = 2} holds. Further, a transition to state 0 from states 1 or 2
implies that the automaton has stopped duplicating nodes in the CFG.

To get further intuition into the structure of the Spit Automaton, we
consider the set of paths from the start state upto node G along which data-
flow facts {x = 1} and {x = 2} flow.

43

Figure 3.18: (a) The two paths along which the data-flow fact {x = 1}
reaches the node G. (b) The two paths along which the data-flow fact {x = 2}
reaches the node G.

Figure 3.18(a) shows the paths along which the data-flow fact {x = 1}
holds. Notice that these paths pass through the edge (B, D). In fact, these
are exactly those paths which are accepted by the state 1 of the Split Au-
tomaton shown in Figure 3.17. Similarly, Figure 3.18(b) shows the paths
along which the data-flow fact {x = 1} holds. In this case, these paths pass
through the edge (C, D)and are exactly those paths which are accepted by
the state 2 of the Split Automaton.

Furthermore, if we examine the corresponding Split Graph which we con-
struct shown in Figure 3.10, we see that these two sets of paths never inter-
sect. Thus, the differing data-flow facts along these paths never merge and
we don’t lose information.

Now, in the Split Automaton, there are transitions back to state 0 on
edges (G, H) and (G, I). This is because after node G it is no longer beneficial
to separate the paths and we don’t lose useful information when the data-flow
facts along paths merge.

2

As we have seen already, a CFG can be viewed as a finite-state automaton
with nodes of the CFG corresponding to the state of the automaton, and the

44

Figure 3.19:

edges defining the alphabet as well as the transition function. The entry and
exit node of the CFG correspond to the start and accepting states in the au-
tomaton respectively. We call this a control-flow automaton (Definition 22).

Definition 34. (Split Graph) Given a CFG P and and a Split Automa-
ton Am, we define the Split Graph S to be S = P × Am, where × is the
product automaton operator [13].

Each node n in the Region of Influence of node m in P will have multiple
copies ni in the Split Graph S, each corresponding to the state si in the Split
Automaton. We refer the reader to the algorithm described in Figure 2.4 for
product computation.

Example. The Split Graph S2 in Figure 3.10 is obtained by performing
the product of the CFG P in Figure 3.9 and the Split Automaton AD in
Figure 3.17.

Figures 3.19−3.21 show the Split Graph being constructed during the
product computation. Figure 3.19(a) shows the start state of the product
automaton which is also the start state of the Split Graph. On the edge
(start, A) the CFG goes to node A while the automaton stays in state 0. A
new state A0 is created, and there is a transition from state start0 to state
A0 in the product automaton as seen in Figure 3.19(b). Similarly, for edges
(A, B) and (A, C), the automaton stays in state 0 and the CFG transitions
to states B and C respectively. The resulting product automaton is shown
in Figure 3.19(c).

Now, for edge (B, D), the automaton transitions uses a Revival transition
and transitions to state 1. Thus, we see the new state D1 and the transition
from state B0 to D1 in the product automaton in Figure 3.20(d). After this
the automaton stays in state 1 which gives rise to states E1, F1, and G1. We
see the same situation for when the automaton is state C0 and transitions on
edge (C, D). States D2, E2, F2 and G2 are created in the product automaton
as shown in Figure 3.20(e).

45

Figure 3.20:

Figure 3.21:

46

Figure 3.22: The split automaton Am for destructive merge m. State 0 is the
start and accepting state. r1 and r2 are Revival edges, and k represents the
Kill edges.

Consider state G1. The split automaton is in state 1. On seeing the
edge (G, H), the split automaton transitions back to state 0 which is a Kill
transition. Thus, state H0 is created and there is a transition from G1 to
H0. Similar, for edge (G, I). After this the automaton stays in state 0 and
state J0 and end0 are created as shown in Figure 3.21(f).

Now consider state G2 in the product automaton. The CFG is in node
G and the split automaton is in state 2. On seeing the edge (G, I), the split
automaton transitions to state 0. Thus, there is a transition from state G2
to state I0 in the product automaton. But, the state I0 already exists in
the product automaton and no new node needs to be created. Similarly, for
edge (G, H). The final Split Graph is shown in Figure 3.21(g).

2

Lemma 3. (Subsumption Lemma) Given a CFG P with a destructive
merge m and the corresponding split automaton Am,
L(P) ⊆ L(Am).

Proof. For clarity of exposition, we will restrict the split automaton Am to the
form shown in Figure 3.22 i.e. Am has only three states. The generalization
of the proof where Am has n states is straight forward.

The set of edges E of the CFG P form the alphabet for the automata P
and Am. Hence, it follows that L(P) ⊆ E∗ and L(Am) ⊆ E∗. The set E∗

can be partitioned into three partitions:

E1: Strings not containing r1 or r2.

47

E2: Strings of the form q · r1 · t, where q can be the empty string
and t does not contain r1 or r2.

E3: Strings of the form q · r2 · t, where q can be the empty string
and t does not contain r1 or r2.

It is easy to see that every string in E∗ belongs to at least one of these
partitions, and any string in E∗ belongs to only one such partition. Thus,
E1, E2 and E3 partition the set E∗ into three equivalence classes.

Consider any string p ∈ E1 ∩ L(P) i.e. p does not contain r1 or r2, and
represents a control-flow path beginning at the start node and ending at the
end node of the CFG P . We shall trace this string through the automaton
Am (Figure 3.22) and see whether the string is accepted. Since p contains
neither r1 nor r2, the automaton will never transition out of state 0. State 0
being the accepting state of automaton Am, string p will be accepted. Thus,
it follows that all strings belonging to equivalence class E1 ∩ L(P) will be
accepted by automaton Am.

Consider any string p ∈ E2 ∩ L(P) i.e. p is of the form q · r1 · t, where
q can be the empty string and t does not contain r1 or r2., and represents
a control-flow path beginning at the start node and ending at the end node
of the CFG P . Again, let us trace this string through the automaton Am.
Suppose that the automaton Am is in state s after reading the (possibly
empty) string q. Now, because of the nature of the transition relation, after
reading the subsequent r1, the automaton Am will transition to state 1. Since
the remaining part of the string p, viz. string t, contains neither r1 nor r2,
the automaton Am will remain in state 1 unless it sees an alphabet from the
kill set k.

By the Post-dominance Lemma (Lemma 2), the kill edges k post-dominate
the destructive merge m. Thus, the string t is of the form t1 · g · t2, where
t1 and t2 may be empty, g ∈ k, and t2 does not contain any alphabet (edge)
from k. Thus, the automaton Am has to make a transition from state 1 to
state 0 after reading g. In state 0 the remaining part of the string i.e. t2 will
not cause any transitions and the automaton will remain in state 0. Thus,
the string p ∈ E2 ∩ L(P) is accepted by automaton Am.

Similarly, we can show that any string p ∈ E3 ∩ L(P) is accepted by
automaton Am.

Hence, we see that L(P) ⊆ L(Am).

Intuitively, the Subsumption Lemma implies that Am is a control-flow
abstraction of P and accepts more words.

48

Theorem 2. (Equivalence Theorem) Consider a CFG P with a de-
structive merge m. If the corresponding split automaton is Am, the the Split
Graph S = P × Am is equivalent to the original CFG P i.e. S ≡ P .

Proof. Since S is the product of P and Am, by the Intersection Lemma
(Lemma 1), we can say that

L(S) = L(P) ∩ L(Am) (3.1)

Further, by the Subsumption Lemma (Lemma 3),

L(P) ⊆ L(Am) (3.2)

Using Equation 3.2 in Equation 3.1, we can infer that

L(S) = L(P) (3.3)

Thus, from Equation 3.3 and Definition 23,

S ≡ P.

Thus, using simple concepts from automaton theory [13], we are able to
prove the correctness of our restructuring transformation. Next, we prove
the efficacy of the restructuring.

Theorem 3. (Efficacy Theorem) If node n ∈ influenced nodes(m)
in CFG P , then in the Split Graph S, node ni, i 6= 0 can be optimized, where
S = P × Am.

Proof. As before, for clarity of exposition, we will restrict the split automaton
Am to the form shown in Figure 3.22 i.e. Am has only three states. The
generalization of the proof where Am has n states is straight forward.

Consider Figure 3.23(a). Node m is a destructive merge and node n ∈
influenced nodes(m). Let d1 be a Revival Data-flow fact and r1 be the
corresponding equivalence class of edges. Data-flow fact d1 holds at the out
of node u. Since n ∈ influenced nodes(m), by definition, if d1 (somehow)
holds true at node m, then node n can be optimized in CFG P . In other
words, if d1 holds at in of node m, then some d3 ∈ useful dff(n) will hold
at in of node n. Here, data-flow fact d3 will hold at in of node n when
considering all paths such as p1, p2, and p3.

The theorem proceeds in two steps. We first show that data-flow fact d1

holds true at the in of node m1 in the Split Graph S. Then, we show that
this data-flow fact does not merge with other differing data-flow facts.

49

Figure 3.23: Refer to text of Theorem 3 for details. (a) Split Graph S.
Paths p1, p2, and p3 represent the various paths which reach the node n ∈
influenced nodes(m) (b) Program P after restructuring. The only paths
which reach n1 are p1 and p2 which pass through node m1.

50

All paths reaching nodes with suffix 1 in the split graph S are of the form
q · (u, m) · r, where subpaths q and r may be empty, and r does not contain
any revival edges. In particular, all paths reaching node m1 in split graph
S are of the form q · (u, m). Since data-flow fact d1 holds true at node u in
program P , it holds at node u in split graph S. Further, since node m1 is
the only successor of node u in split graph S, data-flow fact d1 holds true at
in of node m1. This is illustrated in Figure 3.23(b). This proves the first
part of our proof.

Further, all paths reaching node n1 are also of the form q · (u, m) · r
mentioned above. Thus, data-flow information along paths such as p3 which
do not pass through node m, or along paths which pass through other revival
edges do not reach node n1. Thus, at the in of node n1 some d4 ≤ d3 will
hold. This proves the second part of our proof.

Thus, it follows that data-flow fact d1 holds at in of node m1 in split
graph S and some d3 ∈ useful dff(n) holds at in of node n1. Thus, node
n1 can be optimized in the split graph.

Multiple Destructive Merges

We now consider eliminating multiple destructive merges. Consider the set
of destructive merges M = {m1, m2, . . . ,mk} which are to be eliminated.
Let A1, A2, . . . , Ak be the corresponding Split Automata.

Definition 35. (Split Graph) Given a CFG P and and a set of Split
Automata A1, A2, . . . , Ak, we define the Split Graph S to be S = P × A1 ×
A2 × . . .× Ak, where × is the product automaton operator [13].

In this general setting, a node n in the CFG P can have at most c1 ∗
c2 ∗ . . . ∗ ck copies in the Split Graph S. We represent each node in the
Split Graph using the label of the node in the original graph and a vector of
suffixes of length k i.e. the number of split automata. We use the notation
nj

i to represent those copies of the node n in the Split Graph which have the
jth component of the vector set to i.

The correctness and efficacy results also hold in this general setting. It is
interesting to note that we placed no restriction of the nature of the CFG.
Thus, our restructuring can handle programs with complex loop structures.

Theorem 4. (Equivalence Theorem for Multiple Destructive
Merges) Consider a CFG P with destructive merges m1, m2, . . . ,mk. If
the corresponding split automata are A1, A2, . . . , Ak, then the Split Graph
Sk = P × A1 × A2 × . . . × Ak is equivalent to the original CFG P i.e.
Sk ≡ P .

51

Proof. We prove this theorem by Induction on the number of destructive
merges.

The Base case is when there is a single destructive merge. i.e.

S1 = P × A1.

By Theorem 2, we have
S1 ≡ P.

Now for the Induction step. Let us assume that the theorem is true for
j < k destructive merges. Thus, we have

Sj = P × A1 × A2 × . . .× Aj, j < k (3.4)

and
Sj ≡ P. (3.5)

Now consider

Sj+1 = P × A1 × A2 × . . .× Aj × Aj+1, j ≤ k.

Substituting Equation 3.4,

Sj+1 = Sj × Aj+1

By the Intersection Lemma (Lemma 1),

L(Sj+1) = L(Sj) ∩ L(Aj+1)

Using Equation 3.5,
L(Sj+1) = L(P) ∩ L(Aj+1) (3.6)

Using the Subsumption Lemma (Lemma 3), we have

L(P) ⊆ L(Aj+1) (3.7)

Using Equation 3.6 and 3.7,

L(Sj+1) = L(P)

Thus, we have
Sj+1 ≡ P

Thus, by induction,
Sk ≡ P

52

Lemma 4. (Monotonicity Lemma) Given a node n in the CFG P and
any corresponding node nq in the Split Graph S, in dff(n) � in dff(nq),
where S = P × A1 × A2 × . . .× Ak.

Proof. Let P be the set of paths from the entry node to node n and dff(p),
p ∈ P be the data-flow fact from path p.

By definition,

in dff(n) =
∧
p∈P

dff(p) (3.8)

Let Q be the set of states of the product automaton A = A1×A2×. . .×Ak

and Pq ⊆ P be the set of paths which drive A to the state q ∈ Q.
Thus, we have ∧

p∈P

dff(p) =
∧
q∈Q

∧
p∈Pq

dff(p) (3.9)

Removing the outer meet from the right hand side of Equation 3.9∧
p∈P

dff(p) �
∧

p∈Pq

dff(p),∀q ∈ Q (3.10)

Substituting Equation 3.10 in Equation 3.8 we get,

in dff(n) �
∧

p∈Pq

dff(p),∀q ∈ Q (3.11)

Further in the Split graph, by definition,

in dff(nq) =
∧

p∈Pq

dff(p) (3.12)

Using Equation 3.12 in Equation 3.11, we get

in dff(n) � in dff(nq),∀q ∈ Q (3.13)

In other words, the Monotonicity Lemma implies that splitting and re-
structuring never decreases the precision of the data-flow solution. It might
not necessarily improve the data-flow analysis solution at all nodes, but it
never degrades the analysis result at any node. This result differs from the
Efficacy Theorem (Theorem 3) since it applies to the data-flow solution of
all nodes, and not just those influenced by the particular destructive merge.
A very similar result is proved in [2]. In fact, the above proof does not make

53

use of any properties specific to the Split Automaton. Though simple, this
lemma will be central in proving the Efficacy result for multiple destructive
merges.

Theorem 5. (Efficacy Theorem for Multiple Destructive Merges)
Consider a CFG P with destructive merges m1, m2, . . . ,mk and correspond-
ing split automata A1, A2, . . . , Ak. If node n ∈ influenced nodes(mx),
1 ≤ x ≤ k, then in the Split Graph S, node nx

i , i 6= 0 can be optimized,
where S = P × A1 × A2 × . . .× Ak.

Proof. Without loss of generality, let us consider the destructive merge m1

and the corresponding Split Automaton A1.
Consider the Split Graph

S1 = P × A1 (3.14)

If node n ∈ influenced nodes(m1), using Efficacy Theorem for single
destructive merge (Theorem 3) we can say that some d1 ∈ useful dff(n)
holds at in of node ni, i 6= 0 in Split Graph S1.

Now consider the Split Graph

S = P × A1 × A2 × . . .× Ak (3.15)

Substituting Equation 3.14 in Equation 3.15 we get

S = S1 × A2 × . . .× Ak (3.16)

Using the Monotonicity Lemma (Lemma 4), we can say that for each
node in S say nq which corresponds to the node ni, i 6= 0 in S1,

in dff(ni) � in dff(nq) (3.17)

Thus,

d1 � in dff(nq) (3.18)

This implies that each node nq can be optimized even in the Split Graph
S.

54

3.2 Back to Backward Analysis

We now turn our attention to improving the precision of backward data-flow
analysis such as liveness analysis. One obvious difference is that for backward
analysis the flow of information is not along, but against, the flow of con-
trol. Hence, destructive merges are control-flow forks not control flow joins.
Thus, to a certain extent the extension from forward to backward analysis is
straight-forward: instead of targeting control flow joins where information is
lost, we target control flow forks where data-flow information is merged or ap-
proximated and data-flow precision is lost. This is reflected in the definition
of a destructive merge for backward data-flow analysis (Definition 15).

As before, we use a concrete data-flow analysis to explain the concepts,
though our technique is applicable to any backward data-flow analysis. We
consider Liveness Analysis.

3.2.1 Computing The Region Of Influence

Single Destructive Merge

In this section, we discuss which nodes can and should be duplicated in or-
der to eliminate a destructive merge for backward analysis. The definitions
for Useful Data-flow Facts (Definitions 24 and 25), Influenced Nodes (De-
finition 26), Revival Data-flow facts (Definition 27) apply both for foward
data-flow analysis and backward analysis.

Example. Consider the program in Figure 3.24 and the problem of Live-
ness Analysis. Control-flow fork D is a destructive merge since variable x is
live along outgoing edge (D−E) and is not live along outgoing edge (D, F).
This, in turn, makes variable x live at nodes A and C. Thus, the assignment
at node these nodes cannot be eliminated.

useful dff(C) = {x = N},

useful dff(D, C) = {x = N}.

This is due to the fact that if variable x is not live at node D, then x would
not be live at node C. This would enable us to optimize node C by removing
the statement from node C. Similarly,

useful dff(A) = {x = N},

useful dff(D, A) = {x = N}.

55

Figure 3.24: Simple acyclic program P6. Node D is a destructive merge.
The statement at node B cannot be removed since variable x is live.

Figure 3.25: Duplication required to eliminate a destructive merge for back-
ward analysis.

Thus,
influenced nodes(D) = {A, C},

destroyed dff(D) = {x = N},

revival dff(D) = {x = N}.

2

Figure 3.25 shows the type of duplication required to eliminate a destruc-
tive merge D for backward analysis. We first convert the if statements to
assume statements (Definition 2.1) and then duplicate the control-flow fork
which is a destructive merge. Note that during duplication the number of

56

Figure 3.26: The acyclic program of Figure 3.24 after we eliminate the de-
structive merge at node D by directly applying the techniques developed for
forward analysis. The if statement has been replaced by the corresponding
assume statement. The statements at node C2 and A2 can be removed since
variable x is not live. But the program control-flow is non-deterministic at
the start node.

incoming edges for node D remains the same while the number of outgoing
edges decreases.

Though at first glance there doesn’t appear to be any difficulty in extend-
ing our technique to backward analysis, we show that there are a few subtle
issues which need to be handled to ensure correctness of the transformation.
To illustrate this difference we look at Figure 3.24. We have already identi-
fied that the node D is a destructive merge. Suppose we reverse this CFG
as shown in Figure 3.27 (a) and replace the If node with the appropriate as-
sume statements. Then we carry out the same transformation we did earlier
for forward analysis. Nodes D, B, C,A are duplicated and the destructive
merge at node D is eliminated. The resulting Split Graph is shown in Fig-
ure 3.27 (b). Reversing the directions of the edges once more we get the CFG
of Figure 3.26 in which the destructive merge at node D present in program
P6 (Figure 3.24) is eliminated. As we can see, the data-flow precision has
indeed improved at nodes A2 and C2 since variable x is not live at nodes A2
and C2. We can now eliminate the assignment statements at nodes A2 and

57

Figure 3.27: (a) The reverse graph of the program P6 of Figure 3.24. Node
D is a destructive merge, (b) The split graph after the destructive merge in
(a) has been eliminated by using the transformation described for forward
analysis.

58

Figure 3.28: Graph obtained after hoisting the assume statements in Fig-
ure 3.26 to the outgoing edges of the start node.

C2.
But looking at the control-flow graph we realise that the flow of control

has now become non-deterministic! This is because the assume statements
are still placed on edges (D1 − E1) and (D2 − E2). At the start node,
it is uncertain as to whether the flow of control should go down the edge
(start, A1) or the edge (start, A2).

The problem arises because of the fact that there is some semantic mean-
ing associated with edge (D, E) being taken viz. the predicate (y > 0)
evaluates to True. Similarly, edge (D, F) being taken implies that (y > 0)
evaluates to False. Thus, when we split node D we have to preserve this se-
mantic meaning. In order to ensure that the program remains deterministic,
the transformation should hoist the evaluation of the predicate from node
D and place it at the appropriate place. For our example, we need to hoist
the the evaluation of the predicate to before nodes A1 and A2. The way we
do this is to lift the assume statements to edges (start, A1) and (start, A2)
as shown in Figure 3.28. We then convert the assume statments into the
corresponding if statement as shown in Figure 3.29.

But the evaluation of the predicate cannot be hoisted to any node. Care
should be taken so that the evaluation of the predicate at the new node is
the same as that at the original node. For instance, it is not possible to
lift the predicate over a statement which modifies the predicate expression.

59

Figure 3.29: Graph obtained after converting the assume statement present
in Figure 3.28 into the appropriate if statement. The flow of control is now
deterministic.

Figure 3.30: Program P7.

60

Figure 3.31: Split Graph S7 with assume statements.

Consider the program P7 in Figure 3.30. The predicate (y > 0) cannot
be lifted over block B because the statement y = 1 modifies the predicate
expression. Similarly, predicate (y > 0) cannot be lifted above block A. Thus,
even though it would be beneficial to hoist the predicate evaluation above
node A, the predicate evaluation can only be hoisted up to edges (B, D) and
(A, C).

Keeping this restriction in mind, Figure 3.31 shows the transformed control-
flow graph with the assume statements placed on edges (B, D) and (A, C).
Figure 3.32 shows the same program where the assume statements have been
replaced with the corresponding if statements. The precision is improved at
node C and the assignment statement can be removed since variable x is not
live. Notice that the assignment statement at node A cannot be removed in
this program as was done in program P6. Thus, even though node A is influ-
enced by the destructive merge at node D, node A cannot be split because we
can’t hoist the evaluation of the predicate above node A. In general, due to
the added constraint of hoisting the check present at the destructive merge,
all influenced nodes for a destructive merge cannot be optimized. We call the
Influenced Nodes which can be optimized taking into considering this added
constraint as Realisable Influenced Nodes. We formalise this concept next.

Given a destructive merge, we define the Hoist Region as that region
within which the evaluation of the predicate can be hoisted. We make use
anticipability analysis (Section 2.2.3) to define this region.

61

Figure 3.32: Split Graph S7 with assume statements replaced with if state-
ments.

Definition 36. (Hoist Region) Given a destructive merge m with predi-
cate p, a node n is in the Hoist Region of node m, i.e. m ∈ hoist region(m),
iff expression p is anticipatible at the in of node n, i.e. ant in(n, p) = 1.

Example. In Figure 3.24, node D is the destructive merge with (y > 0)
being the predicate.

ant in(D, (y > 0)) = 1,

ant in(C, (y > 0)) = 1,

ant in(B, (y > 0)) = 1,

ant in(A, (y > 0)) = 1.

Thus, hoist region(D) = {A, B, C,D}.
In Figure 3.30, node D is the destructive merge with (y > 0) being the

predicate.
ant in(D, (y > 0)) = 1,

ant in(C, (y > 0)) = 1,

ant in(B, (y > 0)) = 0,

ant in(A, (y > 0)) = 0.

Thus, hoist region(D) = {C, D}.

62

Figure 3.33: Schematic diagram showing the Split Region for a destructive
merge m.

2

Taking the Hoist Region into consideration, we define the Realisable In-
fluenced Nodes as those Influenced Nodes which are present in the Hoist
Region. Accordingly, we define the Split Region for backward analysis.

Definition 37. (Realisable Influenced Nodes) Given a destructive
merge m, a node n is a Realisable Influenced Node ,
i.e. n ∈ relisable influenced nodes(m), iff n ∈ influenced nodes(m)∩
hoist region(m).

Similar to the definition of Split Region fo forward analysis, we define the
Split Region for backward analysis.

Definition 38. (Split Region) Given a destructive merge m, a node n
is said be in the Split Region, i.e., n ∈ split region(m),
iff n ∈ backward reachable nodes(m) and there exists a node
u ∈ realisable influence nodes(m) and
u ∈ backward reachable nodes(n).

Figure 3.33 shows a schematic diagram showing split region(m) for the
destructive merge m.

63

Note that for forward data-flow analysis the Split Region equals the Re-
gion of Influence since all influenced nodes are realisable. Due to the inherent
nature of the transformation required for backward analysis we have to add
these extra constraints to ensure correctness.

Example. Consider Figure 3.24,

influenced nodes(D) = {A, C},

hoist region(D) = {A, B, C,D},
realisable influenced nodes(D) = {A, C},

split region(D) = {A, B, C,D}.
Consider Figure 3.30,

influenced nodes(D) = {A, C},

hoist region(D) = {C, D},
realisable influenced nodes(D) = {C},

split region(D) = {C, D}.

2

Multiple Destructive Merges

In this section, we extend the concepts of the previous section to handle
multiple destructive merges.

Definition 39. (Realisable Influenced Nodes) Given a set of de-
structive merges M = {m1, m2, . . . ,mk}, the set of Realisable Influenced
Nodes is defined as

realisable influenced nodes(M) =
⋃

m∈M

realisable influenced nodes(m)

Definition 40. (Split Region) Given a set of destructive merges M =
{m1, m2, . . . ,mk}, the Split Region corresponding to M is defined as

split region(M) =
⋃

m∈M

split region(m)

Extending the definitions to handle multiple destructive merges is straight
forward. A node n belongs to realisable influenced nodes(M) iff it is
influenced by at least one destructive merge m ∈ M. Similarly, a node n
belongs to split region(M) iff it belongs to the Split Region of at least one
destructive merge m ∈M.

64

Figure 3.34: Revival and Kill Edges for a Split Region corresponding to a
destructive merge m.

3.2.2 The CFG Restructuring

Single Destructive Merge

As before, we use Automata Theory to carry out the transformation and
show that the restructured CFG satisfies the correctness and efficacy cri-
teria. Again, we define a Split Automaton which we use to perform the
restructuring.

Definition 41. (Kill Edges) Given a Split Region for a destructive merge
m, an edge e = (u, v) is a Kill Edge, i.e. e ∈ kill edges(m), iff u /∈
split region(m) and v ∈ split region(m).

Thus, Kill Edges are those edges whose target node is in the Split Region
and source node is not in the Split Region for a destructive merge m.

Definition 42. (Revival Edges) For a destructive merge m, all outgoing
edges are said be Revival Edges.

Notice that the definition of Revival Edges for backward analysis differs
significantly from that for forward analysis. This new definition is moti-
vated by the need to add the appropriate assume statements. Further, let
d1, d2, . . . dk be the k distinct data-flow facts for destructive merge m. We
can partition the outgoing edges of destructive merge m into k equivalence
classes R1, . . . , Rk. An edge (m, u) ∈ Ri, 1 ≤ i ≤ k if in dff(u) = di.

Figure 3.34 shows a schematic diagram illustrating the above concepts.

Example. In Figure 3.24,

in dff(E) = {x = L}, in dff(F) = {x = N},

65

Figure 3.35: The split automaton Am for destructive merge m. State 0 is the
start and accepting state. r1 and r2 are Revival edges, and k represents the
Kill edges. P1 and P2 are the state predicates for states 1 and 2 respectively.
They are determined by the edge predicates of the Revival edges r1 and r2
respectively.

revival dff(m) = {x = L, x = N},
revival edges(m) = {(D, E), (D, F)},

split region(m) = {A, B, C,D},
kill edges(m) = {(start, A)}.

In Figure 3.30,

in dff(E) = {x = L}, in dff(F) = {x = N},

revival dff(m) = {x = L, x = N},
revival edges(m) = {(D, E), (D, F)},

split region(m) = {C, D},
kill edges(m) = {(B, D), (A, C)}.

2

Figure 3.35 shows the schematic diagram of the Split Automaton for
backward analysis. The structure of the Split Automata for forward and
backward analysis is the same. The main difference is that each transition in
the Split Automaton for backward analysis is additionally annotated with a
predicate. In particular, all transitions to state i, i 6= 0 on edge e are anno-
tated with the predicate edge predicate(e). Furthermore, let e1, e2, . . . , ek

are all the edges which make the automaton transition to state i, i 6= 0 and
let p1, p2, . . . , pn be the corresponding edge predicates respectively. The state
predicate for state i is said be p1 ∨ p2 ∨ . . . ∨ pn.

66

Definition 43. (State Predicate) Let e1, e2, . . . , en be the edges which
cause the split automaton to transition from state 0 to state i and p1, p2, . . . , pn

be the corresponding edge predicates respectively. Then the state predicate
for state i, i.e. state predicate(i), is the predicate p1 ∨ p2 ∨ . . . ∨ pn.

All the self-loops in the split automaton are annotated with the true pred-
icate. This is mainly done for uniformity of exposition and for all practical
purposes can be treated no-operations. These predicates on the Split Au-
tomaton transitions are used in assume statements which will be inserted
on the edges of the resulting product automaton. The assume statements
will then be converted into corresponding conditional checks. This two step
approach is needed when we deal with multiple destructive merges being
eliminated at the same time.

Definition 44. (Split Automaton for Backward Analysis) The
Split Automaton Am corresponding to a destructive merge m is a finite-state
automaton defined as:

• the input alphabet Σ = E, the set of all edges in the CFG,

• a set of k + 1 states Q = {s0, s1, s2, . . . , sk},

• s0 ∈ Q is the initial and accepting state,

• the transition function δ : Q× Σ→ Q defined as
(si, e)→ sj, e ∈ Rj (Revival Transitions)

(si, e)
p→ s0, e ∈ kill edges(m), p = state predicate(si) (Kill Tran-

sitions)
(si, e)→ si, otherwise (No Transition)

• the predicate annotation predicate : Q× Σ→ predicate defined as
if (si, e) → sj, e ∈ Rj then predicate(si, e) = edge predicate(e)
if (si, e) → s0, e ∈ Rj then predicate(si, e) = state predicate(si)
predicate(si, e) = T ,otherwise

Example. Figure 3.36 shows the Split Automaton corresponding to the
destructive merge D in Figure 3.30.

state predicate(1) = y > 0, state predicate(2) =!(y > 0).

The trasitions to state 1 are labelled with edge predicate((D, E)) = y > 0,

2

67

Figure 3.36: The Split Automaton AD corresponding to destructive merge
D in Figure 3.30.

Similar to the case for forward analysis, we define the Split Graph for
backward analysis. The major difference is that we work on the reverse
graph (Definition 6) of the CFG for Backward analysis.

Definition 45. (Split Graph for Backward Analysis) Given a
CFG P and and a Split Automaton Am, we define the Split Graph S to be
the reverse graph of P r × Am, where P r is the reverse graph of P and × is
the product automaton operator [13].

Additionally whenever the Split Automaton transitions from state i to
state j on edge a, add an assume(p) on the corresponding edge in the Split
Graph, where p = predicate(i, a).

Example. Figure 3.31 shows the Split Graph S7 constructed when the
program P7 in Figure 3.30 is split using the Split Automaton of Figure 3.36.
Notice the assume statement placed on edge (D1, B0). The predicate for the
assume is the state predicate for state 1 in the Split Automaton.

2

Figure 3.2.2 shows the algorithm to construct the Split Graph for Back-
ward analysis for a single destructive merge. The main differences between
the forward and backward analysis is that we first have to reverse the input
CFG (Line 1 before performing the product. Further, during the product
computation we have to add the appropriate assume statement on the edge.
This is shown on Line 18. Finally, after the product is computed, the al-
gorithm constructs the reverse graph of the ouput Product graph as seen in
Line 22.

68

BkwdSplit(G, A1(Q1,Σ, δ1, s1, F1))
// Construct the reverse graph.

1 Gr ← reverse(G)
// The start node of product automaton composed of
// start nodes of split automaton and reverse graph .

2 sP ← (end, s1)
// The states of the product automaton; initially only contains the start state.

3 QP ← sP

// The final nodes of the product automaton.
4 FP ← {start} × F1

// Compute the transition function for the product automaton.
// The transition function of the product automaton; initially empty.

5 δP ← ∅
// Worklist of states; initially contains the start state.

6 WorkList W ← sP

// Do while the worklist is not empty.
7 While W 6= empty
8 do
9 state← get(W) // Pop the next state from the worklist.

10 (n1, q1)← state
// Foreach letter in the input alphabet,compute the next state.

11 Foreach a ∈ Σ
12 do // Get the next state.
13 q1‘← δ1(q1, a)
14 next state← (δP (n1, a), q1‘)
15 If (next state /∈ QP) // Check if this is a new state.
16 then
17 // Add the assume statement to edge.
18 edge(state, new state)← assume(predicate(q1, a))

// Add the new state to the set of states.
19 QP ← QP ∪ { next state }

// Push the new state onto the worklist.
20 put(W,next state)

// Add the new transition to the transition function.
21 δP ← δP ∪ { (state, next state) }
22 P r ← reverse(P) //Reverse the product graph
23 return P r

Figure 3.37: Algorithm to compute the Split Graph for Backward Analysis
for a single destructive merge.

69

Figure 3.38: Reverse graph of the Program P7 in Figure 3.30.

Figure 3.39: An example of Product computation for backward analysis.

Example. We now illustrate the workings of the the above algorithm using
the program P7 of Figure 3.30. Figure 3.38 shows the reverse graph of the
program P7 as computed at Line 1. We now compute the product of this
reverse graph and the Split Automaton of Figure 3.36.

Figure 3.39 shows the start state of the product automaton. It is com-
posed of the start state of the reverse graph and the start state of the Split
Automaton. Notice that the start state of the reverse graph is the end node
of the original CFG.

The Split Automaton remains in state 0 on following the edge (G, end).
Thus, as seen in Figure 3.39(b), a new state end 0 is created and the transition
(end 0, G0) is added to the product automaton. In a similar manner, states
E0 and F0 are created as seen in Figure 3.39(c). For clarity, we are not

70

Figure 3.40: An example of Product computation for backward analy-
sis.(contd.)

showing the trivial assume(T) statements on the edges.
Consider the state E0 in the product automaton. The Split Automaton

is in state 0 and the CFG is in node E. On seeing the edge (D, E), the split
automaton transitions to state 1 and the CFG goes to state D. Further,
the predicate y > 0 is used to create the assume(y > 0) statement on
edge (D1, E0) in the product automaton. Further, state D1 transitions to
state C1. A similar situation occurs for the state F0. as illustrated in
Figure 3.40(d).

In state 1 when the automaton sees the edge (B, D) it transitions to state
0 and the corresponding predicate is y > 0. Thus, we see the transition from
state D1 to state B0 in the product automaton with the assume statement
assume(y > 0) add on the edge. The same logic applies to state D2 of the
automaton when it see the edge (B, D). This is seen in Figure 3.41(e).

Finally, Figure 3.42(f) shows the completed product automaton. Notice
that in this CFG each edge is in the reverse direction.

Figure 3.43(g) shows the reverse graph of the graph in Figure 3.42(f).
This is the final Split Graph returned by the algorithm in Figure 3.2.2.

2

The remaining step in the approach for backward analysis is that of con-
verting the assume statements back to the corresponding if statements. The
algorithm is described in Figure 3.2.2. The algorithm takes as input a node n
whose outgoing edges have assume statements. The goal is to replace these
assume with the corresponding if statements. The trivial case is when the

71

Figure 3.41: An example of Product computation for backward analy-
sis.(contd.)

Figure 3.42: An example of Product computation for backward analy-
sis.(contd.)

72

Figure 3.43: The reverse graph of the CFG in Figure 3.42.

there is a single outgoing edge for node n. In this case, we can simply remove
the assume statement as shown in Line 3.

The main loop of the algorithm iterates over all the predicates present in
the assume statements until all assume statements have been replaced. At
Line 8, edges (n, m1) and (n,m2) are are labelled with assume statements
which are same except that (n,m1) has an assume(p) while (n,m2) has
an assume(!p) i.e. the assume statements differ only in the predicate p.
This check is carried out at Line 7. Though this might seem an expensive
check at first glance, note that since we are at max splitting k destructive
merges, there can only be k predicates. Furthermore, the assume statements
can be representing in the classic bit-vector notation i.e. if an edge has an
assume(pi) then bit i in the vector is set, else it is reset. Using this notation,
the check the Line 7 translates to finding two bit-vectors which differ in
exactly one place by simply xor -ing the bit-vectors.

Having found two such edges, a new If node is created and placed into
the CFG as seen in Line 9. Care is taken to connect the true (T) and false
(F) edges of the new If node depending on the assume statements.

Finally, at Line 10, the remaining assume statements are placed on the
edge between the original node n and the new If node n1. The algorithm

73

ConvertAssumes(n)
// Node n has outgoing edges with assume statements.

1 While assume statements exist
do // If n has only one outgoing edge

2 If |succ(n)| = 1
then // Simply remove the assume statement.

3 Edge (n, succ(n))← ∅
4 Return
5 Foreach p ∈ Predicates

do //For all outgoing edges of the given node n.
6 Forall edges ((n, m1), (n, m2))

do // If the assume statements differ only in predicate p.
7 If (n, m1) = assume(p) · assume(q)

and (n, m2) = assume(!p) · assume(q)
then

8 Make new node n1 = If(p).

9 Create new edges (n→ n1), (n1
T→ m1), (n1

F→ m2).
//Add the remaining assume statements to the new edge

10 Edge (n→ n1)← assume(q).

Figure 3.44: Algorithm to convert Assume statements to If statements for
node n.

74

Figure 3.45:

continues until no more assume statements remain. The algorihm is sure to
terminate since at each stage one predicate p is eliminated.

Example. Figure 3.45(a) shows the original node n which has assume
statements on it’s outgoing edges. We see that edges (n,m1) and (n, m2)
satisfy the check at Line 7 of the algorithm. Figure 3.45(a) shows the result-
ing program after the assume(p) is replaced with the If(p) nodes n1. Since
edge (n, m1) had the assume(p), edge (n1, m1) is the true branch for the If.
On the other hand, since edge (n, m2) had the assume(!p), edge (n1, m2) is
the false branch for the If.

In a similar manner, edges (n, m3) and (n, m4) in Figure 3.45(b) are
replaced with the If n2 in Figure 3.46(c). Finally, edges (n, n1) and (n, n2)
are chosen and the assume(Q) is replaced by the If(Q) node n3. In this way,
all the assume statements are replaced by the corresponding If statements
as shown in Figure 3.46(d).

2

75

Figure 3.46:

76

Example. The algorithm is also used to convert the assume statements in
Figure 3.31 into If nodes as shown in Figure 3.32.

2

Using Slicing

Since the Hoist Region affects the extent to which our technique is applica-
ble, we use a restricted form of static backward slicing to not only hoist the
evaluation of the predicate p, but also other statements in the backward
slice of p. The backward slice is restriced in the sense that we only con-
sider the part of the backward slice which is present in the same basic block
as the predicate evaluation p. This implies that only straight-line code is
hoisted which do not contain complex control-flow. Though theoretically
the extension for hoisting more complex backward-slices is possible, the im-
plementation becomes unnecessarily complex. This is similar in flavour to
the slicing transformation described in [5]. The main difference is that the
method is extremely simple and clean. Instead of just the predicates which
are placed on the edges of the Split Automaton, the restricted backward slice
is placed. Thus, instead of placing only assume statements, we also have to
place this restricted backward slice.

Thus, the anticipability analysis which is carried out has to be done on
the upward exposed expressions [15] in the backward slice of the the predicate
p.

Example. Consider the basic block
1. b = c;
2. z = 2;
3. y = a + b;
4. z = z + 1;
5. If(y > 0)

The predicate is y > 0. The backward slice for the expression y > 0
contains the statements
1. b = c;
3. y = a + b;
5. If(y > 0)

The expressions which are upward exposed are a and c. y and b are not
upward exposed since there are definitions of y and b in the same basic block.

Note that since y is modified in the same basic block, it is not possible
to hoist the evaluation of the predicate y > 0 over this basic block. Using
the backward slice of the predicate and hoisting all the statements in it, the
hoist region increases in size. Thus, the scope for optimization increases.

77

2

Multiple Destructive Merges

Similar to forward analysis, it is easy to extend the above approach to elim-
inating multiple destructive merges. Consider the set of destructive merges
M = {m1, m2, . . . ,mk} which are to be eliminated. Let A1, A2, . . . , Ak be
the corresponding Split Automata (Definition 44).

Definition 46. (Split Graph for multiple Destructive Merges
for Backward Analysis) Given a CFG P and and a set of Split Au-
tomata A1, A2, . . . , Ak, we define the Split Graph S to be reverse graph of
P r × A1 × A2 × . . .× Ak, where × is the product automaton operator [13].

Additionally whenever the Split Automaton transitions from state i to
state j on edge a, add an assume(p) on the corresponding edge in the Split
Graph, where p = predicate(i, a).

It is simple to extend the algorithm described in Figure 3.2.2 to handle
multiple destructive merges. The efficacy and equivalence results also hold
when eliminating multiple destructive merges. The proofs have the same
flavour as that for Forward analysis. As for forward analysis, our approach for
backward analysis does not restrict the structure of the CFG. The approach
seamlessly handles loops as well.

78

Chapter 4

Tradeoff

Economy is not how little one can spend,
but how wisely one can spend it.

Origin unknown

I think you can achieve anything, if you are
willing to pay the price

Vince Lombardi

The discussion till now has not dealt with the trade-off between the data-
flow precision achieved and the increase in the code size due to the restructur-
ing inherent to this approach. We have seen that the benefit of eliminating a
destructive merge m is related to the number of nodes influenced by node m.
Also, the size of the Region of Influence of the destructive merge determines
the resulting cost in terms of increase code size. Thus, this trade-off depends
directly on the set of destructive merges we choose to eliminate to form the
Split Graph. Thus, we need to pick the best set of destructive merges which
maximizes the benefit in terms of data-flow precision, for a given cost in terms
of code size. In this section, we will prove that this problem is NP -Hard.
We then proceed to describe certain heuristics for the same.

4.1 Theoretical Analysis

Before we move to the NP -Hardness result, we define the notion of indepen-
dece among destructive merges.

79

Figure 4.1: Schematic diagram illustrating two independent destructive
merges.

Definition 47. (Independent Destructive Merges) Two destructive
merges m1 and m2 are said to be independent iff

RoI(m1) ∩ RoI(m2) = ∅.

Example. Consider Figure 4.1. Destructive merges m1 and m2 are inde-
pendent since their respective Regions of Influence do not share any node in
common.

2

Independent destructive merges are independent is the sense that we can
analyze the code size increase due to restructuring separately, and combine
them using simple addition. This notion is formalised as the Additive Prop-
erty of independent destructive merges.

Theorem 6. (Additive Property) Consider a CFG G and two inde-
pendent destructive merges m1 and m2 with their respective split automata
A1 and A2, then

| N(G) |+ | N(G× A1 × A2) | = | N(G× A1) |+ | N(G× A2) |

80

Figure 4.2: Schematic diagram illustrating the LHS of Equation 4.1. (a)

CFG G, (b) Split Graph S
def
= G× A1 × A2.

81

Figure 4.3: Schematic diagram illustrating the RHS of Equation 4.1. (a)

Split Graph S1
def
= G× A1 , (b) Split Graph S2

def
= G× A2.

82

Proof. Consider the equation,

| N(G) |+ | N(G× A1 × A2) | = | N(G× A1) |+ | N(G× A2) | (4.1)

Let
S

def
= G× A1 × A2,

S1
def
= G× A1,

S2
def
= G× A2,

R1
def
= RoI(m1),

R2
def
= RoI(m2).

Since the two destructive merges are independent, in Split Graph S1 no
node in R2 will be split, while nodes in R1 will be duplicated to form nodes
R′

1. Similarly, in Split Graph S2 no node in R1 will be split, while nodes in
R2 will be duplicated to form R′

2. This is illustrated in Figure 4.3. Further,
in Split Graph S nodes in R1 and R2 will be duplicated due to elimination of
destructive merges m1 and m2 respectively to form the same nodes R′

1 and
R′

2 as show in Figure 4.2. Let C represnt those nodes which lie outside both
R1 and R2 and hence are unaffected by any restructuring.

| N(G) | = | C |+ | R1 |+ | R2 | (4.2)

| N(G× A1 × A2) | = | C |+ | R′
1 |+ | R′

2 | (4.3)

Using Equations 4.2 and 4.3, the LHS of Equation 4.1 can be written as

| N(G) |+| N(G× A1 × A2) | = (| C |+| R1 |+| R2 |)+(| C |+| R′
1 |+| R′

2 |)
(4.4)

Similarly, we have

| N(G× A1) | = | C |+ | R′
1 |+ | R2 | (4.5)

| N(G× A2) | = | C |+ | R1 |+ | R′
2 | (4.6)

Using Equations 4.5 and 4.6, the RHS of Equation 4.1 can be written as

| N(G× A1) |+| N(G× A2) | = (| C |+| R′
1 |+| R2 |)+(| C |+| R1 |+| R′

2 |)
(4.7)

83

Figure 4.4: Schematic diagram illustrating the sufficiency condition for inde-
pendent destructive merges.

Rearranging Equation 4.7, we get

| N(G× A1) |+| N(G× A2) | = (| C |+| R1 |+| R2 |)+(| C |+| R′
1 |+| R′

2 |)
(4.8)

From Equations 4.4 and 4.8, we see that

| N(G) |+ | N(G× A1 × A2) | = | N(G× A1) |+ | N(G× A2) |

This proves the Additive Property for independent destructive merges.

What independent destructive merges allow us to do is to calculate the
increase in code size caused due to restructuring for each destructive merge
separately, and then by simply adding these up we get the total increase in
code size due to all destructive merges used together.

We now state a sufficient, but not necessary, condition for two destructive
merges to be independent.

Lemma 5. (Sufficient Condition for Independence) Two destruc-
tive merges m1 and m2 are independent if

reachable nodes(m1) ∩ reachable nodes(m2) = {end}.

84

Proof. From the Region of Influence of a destructive merge (Definition 28)
it follows that

RoI(m1) ⊆ reachable nodes(m1) (4.9)

RoI(m2) ⊆ reachable nodes(m2) (4.10)

We are given that

reachable nodes(m1) ∩ reachable nodes(m2) = {end} (4.11)

Note that the end node cannot belong to the region of influence since,
it has no statements, it cannot be influenced by any destructive merge, and
since it has no successors it cannot reach any influenced nodes.

Thus, using Equations 4.9 and 4.10 in Equation 4.11,

RoI(m1) ∩ RoI(m2) = ∅

This implies that destructive merges m1 and m2 are independent.

Definition 48. The problem Split is defined by the triple (P,A, C) where:

• P is a program,

• A is a set of split automata corresponding to the various destructive
merges, and

• C is maximum increase in code size that is permitted due to restruc-
turing.

A solution to Split is a subset B of A such that applying B to the program
P does not increase the code-size by more than C and which maximizes the
number of influenced nodes which can be optimized in the resulting program
P ′.

Theorem 7. (Split Theorem) Split is NP -Hard.

Proof. We shall reduce Knapsack [17] to it. We are given a set I of n
items, each item i having a specific weight wi and a profit pi. The goal of
Knapsack is to pick a subset J ⊆ I of the items so as to maximize the total
profit subject to the condition that the total weight is less than a specified
weight W .

Intuitively, in our reduction, picking an item i in Knapsack will corre-
spond to selecting an split automaton in the solution of Split . Thus, we con-
struct a program P , in which for each item i in Knapsack there exists a de-
structive merge Di and a split automaton ai so that | influenced nodes(Di) | =

85

Figure 4.5: The program fragment Pi constructed corresponding the the
Knapsack item i. Di is a destructive merge. The number of influenced nodes
is pi and the size of the region of influence is wi.

Figure 4.6: The structure of program P constructed from the Knapsack
instance. Program P is composed of fragments Pi as shown in Figure 4.5.

86

pi and | RoI(Di) | = wi. Such a program fragment Pi corresponding to an
item i is shown in Figure 4.5.

Further, the profits and costs of items in Knapsack are independent of
each other i.e. the cost of picking an item i does not depend on whether
item j has been placed in the knapsack. To ensure this we have to have
to construct program P so that any two destructive merges Di and Dj are
independent (Definition 47). The structure of program P is illustrated in
Figure 4.6. It is easy to see that for any two destructive merges Di and Dj

reachable nodes(Di) ∩ reachable nodes(Dj) = {end}.

Thus, using the sufficiency condition for independence (Lemma 5), any two
destructive merges Di and Dj are independent.

The profit pi obtained by picking the item i will be mapped to the number
of nodes which are influenced by the destructive merge Di in P . Also, the
weight of the item i will be mapped to the size of the Region of Influence of
destructive merge Di. Thus, the weight of item i corresponds increase in the
code size which occurs when the corresponding split automaton ai is applied.

The constraint of the total weight W of the knapsack is mapped to the
increase in code size which we are allowed in Split . Using the Additive
Property (Theorem 6) for independent destructive merges, the total increase
in code size is the sum of increases in code size due to the individual destruc-
tive merges. In particular, the increase in code size due to destructive merge
Di is | RoI(Di) |.

It can be shown that split automaton ai is in the optimal solution of
Split if and only if item i is selected in the optimal solution of Knapsack
.

It is interesting to note that this hardness result does not rely on the
complexity of the underlying data-flow analysis used, since we are already
given the set of influenced nodes and the Region of Influence for each destruc-
tive merge. Further, the program P does not even contain any loops, and is
acyclic. Thus, restricting the problem Split any furhter does not result in a
computationally tractable problem.

Example. Consider an instance of Knapsack with three items with the
weights and profits as follows:

w0 = 5, p0 = 2,

w1 = 3, p1 = 1,

w2 = 5, p2 = 3.

87

Figure 4.7: Program constructed for Constant Propagation corresponding to
a particular instance of Knapsack . D0, D1 and D2 are destructive merges.

88

Fitness(m)
1 profit← count(m) ∗ |influenced nodes(m)|
2 cost← |RoI(m)|
3 fitness← profit / cost
4 return fitness

Figure 4.8: Computing the fitness of a destructive merge.

The corresponding program constructed is shown in in Figure 4.7. We
see the corresponding to each item i in Knapsack , we have a destructive
merge Di with

| RoI(D0) | = 5, | influenced nodes(D0) | = 2,

| RoI(D1) | = 3, | influenced nodes(D1) | = 1,

| RoI(D2) | = 5, | influenced nodes(D2) | = 3.

Further, destructive merges D0, D1 and D2 are all independent of each other.

2

4.2 Heuristic Solution

This lead us to device an aggressive greedy heuristic to solve this problem.
Our approach is based on estimating the benefit obtained and cost incurred
by eliminating a destructive merge. In the absence of profile information, we
define the fitness of a destructive merge m to be

fitness(m) = |influenced nodes(m)| / |RoI(m)|.

Otherwise, we can make use of a low-cost basic-block profile to estimate the
potential run-time benefit of eliminating a destructive merge. Let count(m)
be the number of times the destructive merge was executed in the profile
run. We now define the fitness to be

fitness(m) = count(m) ∗ |influenced nodes(m)| / |RoI(m).

In this way, frequently executed destructive merges are more likely to be
eliminated, and our approach can concentrate on the hot regions of code.
Finally, we choose the k fittest destructive merges to be eliminated. It should

89

be noted that while this heuristic method does not guarantee that the code
size increase is within some bound (C), it works well in practice.

Figure 4.2 describes the algorithm for computing the fitness of a destruc-
tive merge m. Note that this algorithm applies to backward analysis as well.

90

Chapter 5

Related Work

Seek not to follow in the footsteps of wise men,
Seek what they sought.

Basho

5.1 Hot Path Graph Approach

An earlier proposal by Ammons and Larus [2] uses an acyclic path profile to
try and improve the precision of the data-flow solution along hot paths. The
approach consists of first using a Ball-Larus path profile [3] to determine the
hot acyclic paths in the program. The next step in [2] consists of constructing
a new CFG, called the Hot Path Graph (HPG), in which each hot path is
duplicated. This duplication is carried out in such a way that data-flow facts
along the hot acyclic path do not get destroyed due to merge with facts
along other overlapping acyclic paths. Conventional data-flow analysis is
then carried out on the HPG. This approach relies on the assumption that
removing control-flow merges along hot acyclic paths improves precision of
data-flow analysis on hot path.

Consider the example code in Figure 5.1(a). Assume a path profile as
shown in Table 5.1. Figure 5.1(b) shows the resulting HPG constructed
assuming 100% coverage i.e. all taken paths are considered. Notice that in
the HPG there are no control-flow merges along any of the acyclic paths listed
in Table 5.1. For example, the two overlapping acyclic paths B → C → E
and B → D → E in Figure 5.1(a) are separated into two separate paths
B1 → C2 → E2 and B1 → D3 → E3 in the HPG. After performing
conventional data-flow analysis on the HPG, the use of the variable a at
node B0 can be replaced by the constant 0. However, the restructuring
failed to optimize the two hot paths B → C → E and B → D → E, and

91

Figure 5.1: (a) Node E is a destructive merge.Use of variable a at node B
cannot be replaced with a constant. (b)The Hot Path Graph corresponding
to program P1. Node B1 is a destructive merge, and use of variable a still
cannot be replaced by a constant.

Ball-Larus Acyclic Path Frequency
A→ B → C → E 10
B → C → E 60
B → D → E 20
B → D → E → F 10

Table 5.1: A path profile for the example in Figure 5.1. The frequency of
the acyclic path denotes the number of times it was taken at run-time.

92

Figure 5.2: The Split Graph constructed from program P1 in which the uses
of variable a at nodes B0, B1 and B2 can be replaced by constants 0, 1 and
2 respectively.

could not replace the use at node B1 with a constant value. The destructive
merge E in the original CFG is removed in the HPG by duplicating code and
creating two copies, E2 and E3. But the effect of the destructive merge has
shifted to node B1, which is now a destructive merge since the data-flow facts
a = 1 and a = 2 flowing along the incoming edges are merged at node B1.
Thus, we see that simply duplicating acyclic paths does not always guarantee
an increase in data-flow precision. Also, concentrating only on acyclic paths
implies that all loop-back edges (E2, B1 and E3, B1 in the HPG) merge at
a common loop-header (node B1 in the HPG). Thus, loop-headers which
are destructive merges cannot be eliminated by the Ammons-Larus approach
and data-flow precision is lost in these cases.

In comparison, the Split Graph constructed by our approach is shown in
Figure 5.2. The destructive merge at node E is completely eliminated. In the
Split Graph, uses of variable a at nodes B0, B1 and B2 can be replaced by
constants 0, 1 and 2 respectively. Thus, we see that our approach effectively
handles loop structures, guarantees additional optimization opportunities,
and does not rely on expensive path profile information1. We compare the
HPG method with our approach quantitatively in Chapter 6.

1For constructing the HPG the Ammons-Larus approach relies on the path profile
information which is relatively more expensive than the simple basic block profile used in
our Split Graph construction.

93

5.2 Other related approaches

In [7], an approach for complete removal of partial redundancy is described.
Data-flow analysis is used to identify those regions of code which obstruct
code motion. Code duplication and code motion are then used to eliminate
the partial redundancy. Another approach targeted for PRE is discussed
in [23]. Our approach is applicable for a more general class of data-flow
problems as compared to these.

Code restructuring need not necessarily be limited to within a proce-
dure. An extension of Ammons-Larus approach to the interprocedural case
is described in [14]. A more recent framework [24] for whole-program opti-
mization also considers code duplication to perform area specialization, which
is purely profile-driven.

There have also been several other approaches which do not restructure
the CFG in order to improve data-flow analysis precision. Holley and Rosen
presented a general approach to improve data-flow precision by adding a finite
set of predicates [12]. In [6], the precision of def-use analysis is improved by
determining infeasible paths by using a low overhead technique based on de-
tection of static branch correlations. Interestingly, path-sensitivity can also
be obtained by synthesizing the name space of the data-flow analysis [4].
Property simulation is introduced in ESP [8] and is used to verify tempo-
ral safety properties. This approach keeps track of the correlation between
“property state” and certain execution states. In [9], data-flow analysis is
performed over a predicated lattice. The predicates used are determined auto-
matically using a counterexample refinement technique. In [10], the context-
sensitivity of the pointer analysis is adjusted based on the requirements of
the client application. These approaches are complementary to the approach
described in this paper.

94

Chapter 6

Experimental Results

I expected results.
Bernie Ebbers,former CEO, WorldCom

In this chapter, we evaluate our approach for improving data-flow analysis
precision. We have instantiated our framework for Constant Propagation and
Liveness Analysis. We have implemented our approach in the Scale research
compiler framework [21]. The framework is parameterised with the definition
of a destructive merge, which depends on the data-flow analysis used, and
on the definition of influenced nodes, which captures the interaction between
the specific optimization and analysis.

6.1 Forward Analysis

We present experimental results for the specific problem of Constant Propa-
gation [1]. We compare our approach (Split) with the Wegman-Zadeck con-
ditional constant propagation algorithm [25](Base) and the Hot Path Graph
approach(HPG) [2] using the SPECINT 2000 benchmark suite [22].

6.1.1 Benefits of Split Approach

We instantiate the constant propagation phase of the O1 pass of the Scale
compiler with the default approach (Base), the HPG approach, and Split.
The HPG approach uses a path profile generated using the train inputs for
the respective programs, while the our Split approach uses a basic block
profile from the same train inputs. The benchmarks are compiled for DEC
ALPHA and were run on the 500MHz 21264 Alpha workstation. Running
times were measures as average over multiple runs using the larger ref inputs.

95

Benchmark % speedup of Split over Base % speedup of Split over HPG
175.vpr 5 1

186.crafty -2 2
197.parser 2 3
256.bzip2 0 3
300.twolf 3 -2
181.mcf 12 4
164.gzip 3 2
average 4 2

Table 6.1: Percentage speedup in the running times using Split in comparison
to Base and HPG.

Benchmark Split / HPG
175.vpr 1.15

186.crafty 1.10
197.parser 1.27
256.bzip2 1.11
300.twolf 0.93
181.mcf 13.75
164.gzip 2.32
average 3.5

Table 6.2: Ratio of the number of dynamic instructions with constant uses
in Split over HPG.

Table 6.1 shows the speedup obtained by our Split approach over the
Base approach and over the HPG approach. Split gives an average speedup
of 4% over the Base case, and it gives an average speedup of 2% over the
HPG approach.

To understand where the speedup comes from, we calculate the number
of dynamic instructions which have constant uses indentfied by the restruc-
turing transformation. This is computed by first performing constant propa-
gation and replacing all constant uses in the original program. Restructuring
(HPG or Split) is then carried out. The constant uses discovered can be at-
tributed only to the restructuring. Thus, each instruction is weighted by the
product of its execution count (using the ref inputs)and the number of new
constant uses. The sum over all instructions gives us the number of dynamic
instructions which have constant uses only because of restructuring. This
metric has also been used in [2]. Table 6.2 shows the ratio of these instruc-

96

Benchmark Split / Base Split / HPG
175.vpr 1.5 0.7

186.crafty 2.0 0.7
197.parser 1.8 1.1
256.bzip2 1.9 0.5
300.twolf 2.0 0.7
181.mcf 1.9 1.0
164.gzip 1.5 0.8
average 1.8 0.65

Table 6.3: Ratio of code size increase of Split over Base, and of Split over
HPG.

tions for Split over than of HPG. We observe an average of 3.5 times more
dynamic instructions with constants uses in Split as compared to HPG. In
the 181.mcf Split results in as many as 13.75 times dynamic constant use
instructions. This is because Split can handle cyclic structures effectively.

6.1.2 Cost of Split Approach

As mentioned earlier, the increase in precision comes at the cost of code
duplication. We measured the code size in terms of the number of Scale
intermediate instructions. Table 6.3 shows the ratio of the code size of Split
over that of Base. We observe an average of 1.8× (80%) increase due to
Split. The Table also shows the ratio of code size of Split over that of HPG.
We notice that Split incurrs less code size increase in comparison to HPG.
Split shows an average of 0.65× (35%) decrease in code size as compared to
HPG.

6.2 Backward Analysis

We present experimental results for the specific problem of Liveness Analy-
sis [1]. The experimental methodology used in the same as that for Constant
Propagation. As before, we compare our approach, Split, with the baseline
Base.

6.2.1 Benefits of Split Approach

We measure the benefits of our approach in terms of the percentage speedup
obtained in comparison with Base.

97

Benchmark % speedup of Split over Base
175.vpr 2

186.crafty 0
197.parser 1
256.bzip2 0
300.twolf 1
181.mcf 0
164.gzip 2
average 0.8

Table 6.4: Percentage speedup in the running times using Split in comparison
to Base.

Benchmark Split / Base
175.vpr 1.1

186.crafty 1.2
197.parser 1.1
256.bzip2 1.1
300.twolf 1.3
181.mcf 1.15
164.gzip 1.2
average 1.15

Table 6.5: Ratio of code size increase of Split over Base.

Table 6.4 shows the percentage speedup obtained. Improving the pre-
cision of liveness analysis causes code to become dead. We noticed that a
majority of the code which became dead was not in loops. This is reflected
in the lack up speedup we get for most benchmarks such as 186.crafty. On
average, we get a average percentage speedup of 0.8%.

6.2.2 Cost of Split Approach

As before we measure the cost of the Split approach in terms of the increase
in code duplication.

Table 6.5 shows the increase in code due to our code duplication. Due to
the nature of the backward algorithm, the size of the Region of Influence is
comparitively small. This is evidenced in the comparitively small increase in
code size. On an average we see a 15% increase in code size.

98

Chapter 7

Conclusions and Future
Directions

A conclusion is the place where you get tired of
thinking.

Arthur McBride Bloch

In this day, a man who says that something
cannot be done, is apt to be interrupted by some
idiot doing it.

Elbert Hubbard

We proposed a general framework to improve data-flow analysis preci-
sion based on restructuring the CFG of the program. The framework can
be instantiated to any data-flow analysis. The actual transformation uses a
known concepts of product automaton. We have proved that the transforma-
tion guarantees increase in optimization opportunities. Further, we showed
that getting the optimal restructuring is NP-hard and proposed and eval-
uated a greedy heuristic. Our results indicate that our approach performs
better than existing path profile driven approach [2].

7.1 Future Directions

7.1.1 Interprocedural Analysis

Our technique is currently restricted to be intra-procedural. It would be
worthwhile to explore an inter-procedural extension to our approach along
the lines of [14, 24], but which retains the simplicity and guarantees of our
approach.

99

Figure 7.1: Figure illustrating a demand-driven version of our approach.

7.1.2 Points-to Analysis

Though as is our technique is applicable to points-to analysis, there are some
interesting issues which arise when trying to make points-to analysis path
sensitive. Specifically, the problem of estimating the benefits of improving
precision at a program point for a given variable is not easy, since the benefit
depends a lot on the client of the analysis.

7.1.3 Demand-driven Analysis

Currently, we target destructive merges where information is lost. We could
also be given program statements at which we want better precision and
carry out the restructuring in such a demand-driven fashion. For example,
following the use-def chains of the variables at a statement we can trace
back to the particular destructive merge which was responsible for the loss
in precision. Further, the only influenced node for this destructive merge
would be the one provided. The rest follows as described.

Example. Figure 7.1 illustrates this concept. Suppose we are told to op-
timize node H : y = a;. By following the use-def chains from H → G→ D,
we realise that the destructive merge D needs to be targeted. Setting the

100

Figure 7.2: One possible way of handling restructuring for multiple analyses.

Figure 7.3: A composite approach to handle multiple analyses.

influenced nodes of D to the single node H we can carry out our restruc-
turing to optimize H. Note that even though node J is also influenced by
destructive merge D we do not include it in the influenced nodes.

2

7.1.4 Combined Restructuring for Multiple Analysis

Our approach can also be extended to handle multiple data-flow analysis
in the same pass. For example, restructuring the control-flow graph only
once to improve precision of constant propagation and availability analysis
as shown in Figure 7.3, as opposed to a separate pass for each analysis as
shown in Figure 7.2.

To achieve this we have to define the notion of a composite destructive
merge taking into consideration both the analyses. This can be done in the
following two ways.

Definition 49. (And-Composite Destructive Merge) Given two analy-
ses A1 and A2, a control-flow merge m is said to be a and-composite destruc-
tive merge if it is a destructive merge in A1 and in A2.

Alternatively, we could define a composite destructive merge as:

Definition 50. (Or-Composite Destructive Merge) Given two analy-
ses A1 and A2, a control-flow merge m is said to be a or-composite destructive
merge if it is a destructive merge in A1 or in A2.

101

Figure 7.4: Program P2 used to illustrate composite destructive merge for
constant propagation and availability analyses.

Figure 7.5: Program P1 used to illustrate composite destructive merge for
constant propagation and availability analyses.

102

Example. Consider constant propagation and availability analyses. In Fig-
ure 7.4, merge D is not an and-composite destructive merge, since it is not
a destructive merge for availability analysis. But in Figure 7.5, merge D is
an and-composite destructive merge.

Note that in both the figures, merge D is an or-composite destructive
merge.

2

In a similar vain, we need to define the notion of an influenced node in
this composite analysis.

Definition 51. (And-Influenced Node) Given composite destructive
merge m, a node n is said to an and-influenced node if it is an influenced
node according to analysis A1 and analysis A2.

Definition 52. (Or-Influenced Node) Given combined destructive merge
m, a node n is said to an or-influenced node if it is an influenced node ac-
cording to analysis A1 or analysis A2.

Having defined composite destructive merges and influenced nodes, we
can perform the restructuring as described earlier by constructing a split
automaton and performing a product. If we consider And-Composite De-
structive merges and and-influenced nodes, then all the influenced nodes will
be optimized in the restructured program. This can be seen as a generalisa-
tion of the Efficacy Theorem to this composite restructuring.

It is not clear as to whether such a combined restructuring will always
give the same optimized program as the one obtained by performing separate
passes. This is because the increase in precision of one analysis might result in
different restructuring for the other other. More experimental and analytical
evaluation needs to be carried out to better understand this.

7.2 Conclusions

In this thesis, we studied the problem of improving the precision of data-flow
analysis. The approach we took was to restructure the control-flow graph
of the program. Having studied the related literature, we found no uniform
approach to tackle all kinds of data-flow analysis used commonly in compiler
optimizations. We believe that the framework developed in this thesis con-
forms to the simplicity and generality constraints imposed by us. We have
shown how to apply this to any forward and backward analysis. Specifically
we illustrated our approach using constant propagation and liveness analysis.

103

Our claim of simplicity stems from the machinery we used to tackle this
challenging problem. By using key ideas from automata theory, we could eas-
ily express our approach and also rigorously prove useful properties. Specifi-
cally, we used the product automaton to compute the restructured graph. We
have methodically proved that our restructuring transformation is correct in
that it preserves the semantics of the original program, and it is guaranteed
to increase optimization opportunities in the restructured program.

Interestingly, having developed a framework for forward analysis, extend-
ing it to backward analysis posed interesting challenges. The approach de-
scribed minimally changes the basic approach applicable to forward analysis
and only appends the necessary changes to the approach.

The most difficult problem was to control the code explosion caused as a
result of the code duplication. The major result here was to prove that finding
the optimal restructured control-flow graph is NP -Hard. Furthermore, the
proof also showed that the problem could not be simplified in order to make it
tractable. This is the reason we developed a greedy algorithm. The algorithm
makes use of profile information, though it does not completely rely on it.

Finally, we have implemented the framework into the Scale research com-
piler. Our results show promise, but as described in Section 7.1, there are a
lot of interesting problems yet to be solved.

104

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, 1986.

[2] Glenn Ammons and James R. Larus. Improving data-flow analysis with
path profiles. In PLDI, pages 72–84, 1998.

[3] Thomas Ball and James R. Larus. Efficient path profiling. In Interna-
tional Symposium on Microarchitecture, pages 46–57, 1996.

[4] Rastislav Bod́ık and Sadun Anik. Path-sensitive value-flow analysis.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 237–251, 1998.

[5] Rastislav Bodik and Rajiv Gupta. Partial dead code elimination using
slicing transformations. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 1997.

[6] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Refining data flow
information using infeasible paths. In M. Jazayeri and H. Schauer, ed-
itors, Proceedings of the Sixth European Software Engineering Confer-
ence (ESEC/FSE 97), pages 361–377. Springer–Verlag, 1997.

[7] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete removal of
redundant expressions. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 1–14, 1998.

[8] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive pro-
gram verification in polynomial time. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 57–68, 2002.

[9] Jeffrey Fischer, Ranjit Jhala, and Rupak Mujumdar. Joining data flow
with predicates. In Foundations of Software Engineering, pages 227–236,
2005.

105

[10] S. Guyer and C. Lin. Client-driven pointer analysis. In International
Static Analysis Symposium, 2003.

[11] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Sci-
ence Inc., New York, NY, USA, 1977.

[12] L. Howard Holley and Barry K. Rosen. Qualified data flow problems.
IEEE Transactions on Software Engineering (TSE), 7(1):60–78, 1981.

[13] Dexter C. Kozen. Automata and Computability. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1997.

[14] David Melski and Thomas Reps. The interprocedural express-lane trans-
formation. In Compiler Construction, 2003.

[15] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan-Kaufmann, San Fransisco, CA, 1997.

[16] Markus Müller-Olm and Oliver Rüthing. On the complexity of constant
propagation. In ESOP ’01, pages 190–205, London, UK, 2001. Springer-
Verlag.

[17] Christos H. Papadimitriou. Computational Complexity. Addison Wesley,
1994.

[18] T. A. Proebsting. Proebsting’s Law: Compiler Advances Double Com-
puting Power Every 18 Years. https://research.microsoft.com/ tod-
dpro/papers/law.htm. 1998.

[19] W. W. Pugh. Is Code Optimization (Research) Relevant?.
http://www.cs.umd.edu/ pugh/IsCodeOptimizationRelevant.pdf.

[20] John H. Reif and Harry R. Lewis. Symbolic evaluation and the global
value graph. In POPL ’77, pages 104–118, New York, NY, USA, 1977.
ACM Press.

[21] Scale. A scalable compiler for analytical experiments. www-
ali.cs.umass.edu/Scale/, 2006.

[22] SPEC. Standard Performance Evaluation Corporation.
http://www.spec.org.

[23] Bernhard Steffen. Property-oriented expansion. In Third Static Analysis
Symposium, pages 22–41, 1996.

106

[24] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I. August.
A framework for unrestricted whole-program optimization. In PLDI,
June 2006.

[25] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. In ACM Transactions on Programming Languages
and Systems, pages 181–210, 1981.

107

Index

Additive Property, 80
And-Composite Destructive Merge, 101
And-Influenced Node, 103
Anticipatability Analysis, 16
Assume Statements, 12

CFG, see Control Flow Graph
CFG Equivalence, see Equivalence, of

Control Flow Graphs
Constant propagation, 15
Control Flow Automaton, 22
Control Flow Graph, 9
Control Flow Paths, 10

Data-flow Analysis, 13
Data-flow Analysis Framework, 14
Data-flow analysis framework, 14
Data-flow Solution, 14
Destroyed Data-flow Facts, 16
Destroyed Data-flow Facts, Backward

Analysis, 18
Destructive Merge, 16
Destructive Merge, Backward Analy-

sis, 17
Deterministic Finite Automaton, 19

Edge Predicate, 12
Efficacy Theorem

for a single Destructive Merge, 49
for Multiple Destructive Merges,

54
Equivalence Theorem

for a single Destructive Merge, 49
for multiple Destructive Merges,

51

Equivalence, of Control Flow Graphs,
22

Fixed Point Solution, 15

Generalized Post-dominator Set, 10

Hoist Region, 62

in, 14
in dff, 14
Independent Destructive Merges, 80

Additive Property, 80
Sufficient Condition, 84

Influence Theorem, 35
Influenced Nodes

for a single Destructive Merge, 34
for multiple Destructive Merges,

38
Influenced Nodes, Realisable, 63

for multiple Destructive Merges,
64

influenced nodes, see Influenced Nodes
Intersection Lemma, 20

Kill Edges
Backward Analysis, 65
Forward Analysis, 40

KNAPSACK problem, 85

Language of Finite Automaton, 19
Liveness Analysis, 15

Maximum Fixed Point Solution, 15
MFP, see Maximum Fixed Point So-

lution

108

Monotonicity Lemma, 53

Näıve solution, 26
NP -Hard, 79

Or-Composite Destructive Merge, 101
Or-Influenced Node, 103
out, 14
out dff, 14

PCP, see Post Correspondence Prob-
lem

Post Correspondence Problem, 36
Post-dominance Lemma, 41
pred, 10
Product Automaton, 19
Product Automaton, Generalized, 20

Reachable Nodes, 10
Reachable Nodes, Backward, 10
Region of Influence

for a single Destructive Merge, 37
for multiple Destructive Merges,

38, 64
Reverse Graph, 10
Revival Data-flow Facts, 34
Revival Edges

Backward Analysis, 65
Forward Analysis, 40

revival dff, see Revival Data-flow
Facts

RoI, see Region of Influence

Simple Graph, 9
Split Automaton, 43
Split Automaton, Backward, 67
Split Graph

for a single Destructive Merge, 45
for multiple Destructive Merges,

51, 78
Split Graph, Backward

for a single Destructive Merge, 68

SPLIT problem, 85
Split Region, 63
Split Theorem, 85
State Predicate, 67
Subsumption Lemma, 47
succ, 10

Useful Data-flow Facts, 33
useful dff, see Useful Data-flow Facts

109

	Introduction
	Preliminaries
	Control-flow graphs
	Data-flow Analysis
	Constant Propagation
	Liveness Analysis
	Anticipatability Analysis

	Destructive Merge
	Forward Analysis
	Backward Analysis

	Automata Theory
	Overall Algorithm

	The Transformation
	For Forward Analysis
	The Naïve Solution
	Computing The Region Of Influence
	The CFG Restructuring

	Back to Backward Analysis
	Computing The Region Of Influence
	The CFG Restructuring

	Tradeoff
	Theoretical Analysis
	Heuristic Solution

	Related Work
	Hot Path Graph Approach
	Other related approaches

	Experimental Results
	Forward Analysis
	Benefits of Split Approach
	Cost of Split Approach

	Backward Analysis
	Benefits of Split Approach
	Cost of Split Approach

	Conclusions and Future Directions
	Future Directions
	Interprocedural Analysis
	Points-to Analysis
	Demand-driven Analysis
	Combined Restructuring for Multiple Analysis

	Conclusions

