Bilateral Algorithms for Symbolic Abstraction*

Aditya Thakur!, Matt Elder!, and Thomas Reps!':2**

! University of Wisconsin; Madison, WI, USA
2 @GrammaTech, Inc.; Ithaca, NY, USA

Abstract. Given a concrete domain C, a concrete operation 7 :C — C,
and an abstract domain 4, a fundamental problem in abstract interpre-
tation is to find the best abstract transformer 7% : A — A that over-
approximates 7. This problem, as well as several other operations needed
by an abstract interpreter, can be reduced to the problem of symbolic
abstraction: the symbolic abstraction of a formula ¢ in logic £, denoted
by a(yp), is the best value in A that over-approximates the meaning of .
When the concrete semantics of 7 is defined in £ using a formula ¢, that
specifies the relation between input and output states, the best abstract
transformer 7% can be computed as a(yp,).

In this paper, we present a new framework for performing symbolic
abstraction, discuss its properties, and present several instantiations for
various logics and abstract domains. The key innovation is to use a bilat-
eral successive-approximation algorithm, which maintains both an over-
approximation and an under-approximation of the desired answer.

1 Introduction

For several years, we have been investigating connections between abstract inter-
pretation and logic—in particular, how to harness decision procedures to obtain
algorithms for several fundamental primitives used in abstract interpretation.
Automation ensures correctness and precision of these primitives [3, §1.1], and
drastically reduces the time taken to implement the primitives [19, §2.5] This
paper presents new results on this topic.

Like several previous papers [25,15,11,34], this paper concentrates on the
problem of developing an algorithm for symbolic abstraction: the symbolic ab-
straction of a formula ¢ in logic £, denoted by @(y), is the best value in a given
abstract domain A that over-approximates the meaning of ¢ [25]. To be more
precise, given a formula ¢ € £, let [¢] denote the meaning of p—i.e., the set of

* Supported, in part, by NSF under grants CCF-{0810053, 0904371}, by ONR under
grants N00014-{09-1-0510, 10-M-0251, 11-C-0447}, by ARL under grant W911NF-
09-1-0413, by AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088; and by
DARPA under cooperative agreement HR0011-12-2-0012. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the
authors, and do not necessarily reflect the views of the sponsoring agencies.

** T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements
of the technology discussed in this publication.

2 Aditya Thakur, Matt Elder, and Thomas Reps

concrete states that satisfy . Then @(yp) is the unique value a € A such that
(i) [¢] € ~(a), and (i) for all @’ € A for which [¢] C v(a'), a C o'. In this
paper, we present a new framework for performing symbolic abstraction, discuss
its properties, and present several instantiations for various logics and abstract
domains.

Several key operations needed by an abstract interpreter can be reduced to
symbolic abstraction. For instance, one use of symbolic abstraction is to bridge
the gap between concrete semantics and an abstract domain. Cousot and Cousot
[5] gave a specification of the most-precise abstract interpretation of a concrete
operation 7 that is possible in a given abstract domain:

Given a Galois connection C <£> A, the best abstract transformer,
(6%

T# . A — A, is the most precise abstract operator possible that over-
approximates 7. 7% can be expressed as follows: 7# =« o T o 7.

The latter equation defines the limit of precision obtainable using abstraction
A. However, the definition is non-constructive; it does not provide an algorithm,
either for applying 7# or for finding a representation of the function 7#. In
particular, in many cases, the explicit application of v to an abstract value would
yield an intermediate result—a set of concrete states—that is either infinite or
too large to fit in computer memory.

In contrast, it is often convenient to use a logic £ to state the concrete se-
mantics of transformer 7 as a formula ¢, € £ that specifies the relation between
input and output states. Then, using an algorithm for symbolic abstraction, a
representation of 7# can be computed as a (o,).

To see how symbolic abstraction can yield better results than conventional
approaches to the creation of abstract transformers, consider an example from
machine-code analysis: the x86 instruction “add bh,al” adds al, the low-order
byte of 32-bit register eax, to bh, the second-to-lowest byte of 32-bit register ebx.
The semantics of this instruction can be expressed in quantifier-free bit-vector
(QFBYV) logic as

gt . (ebx & OxFFFFOOFF) ,
p1=ebx = (| ((ebx + 256 * (eax & 0xFF)) & 0xFFoo)> Neax' =eax, (1)
where “&” and “|” denote bitwise-and and bitwise-or. Eqn. (1) shows that the
semantics of the instruction involves non-linear bit-masking operations.

Now suppose that abstract domain A is the domain of affine relations over
integers mod 232 [11]. For this domain, a(p;) is (2!%ebx’ = 210ebx + 2*1eax)
N(eax’ = eax), which captures the relationship between the low-order two bytes
of ebx and the low-order byte of eax. It is the best over-approximation to
Eqn. (1) that can be expressed as an affine relation. In contrast, a more conven-
tional approach to creating an abstract transformer for ¢ is to use operator-by-
operator reinterpretation of Eqn. (1). The resulting abstract transformer would
be (eax’ = eax), which loses all information about ebx. Such loss in precision is
exacerbated when considering larger loop-free blocks of instructions.

Bilateral Algorithms for Symbolic Abstraction 3

Motivation. Reps, Sagiv, and Yorsh (RSY) [25] presented a framework for
computing @ that applies to any logic and abstract domain that satisfies certain
conditions. King and Sgndergaard [15] gave a specific & algorithm for an abstract
domain of Boolean affine relations. Elder et al. [11] extended their algorithm to
affine relations in arithmetic modulo 2%—i.e., for some bit-width w of bounded
integers. (When the generalized algorithm is applied to ¢ from Eqn. (1), it finds
the @(¢y) formula indicated above.) Because the generalized algorithm is similar
to the Boolean one, we refer to it as KS. We use RSY[AR] to denote the RSY
framework instantiated for the abstract domain of affine relations modulo 2*.

The RSY[AR] and KS algorithms resemble one another in that they both
find a(y) via successive approximation from “below”. However, the two algo-
rithms are not the same. As discussed in §2, although both the RSY[AR] and
KS algorithms issue queries to a decision procedure, compared to the RSY[AR)
algorithm, the KS algorithm issues comparatively inexpensive decision-procedure
queries. Moreover, the differences in the two algorithms cause an order-of-
magnitude difference in performance: in our experiments, KS is approrimately
ten times faster than RSY[AR].

These issues motivated us to (i) investigate the fundamental principles un-
derlying the difference between the RSY[AR] and KS algorithms, and (ii) seek a
framework into which the KS algorithm could be placed, so that its advantages
could be transferred to other domains. A third motivating issue was that nei-
ther the RSY framework nor the KS algorithm are resilient to timeouts. Because
the algorithms maintain only under-approximations of the desired answer, if the
successive-approximation process takes too much time and needs to be stopped,
they must return T to be sound. We desired an algorithm that could return a
nontrivial (non-T) value in case of a timeout.

The outcome of our work is a new framework for symbolic abstraction that

— is applicable to any abstract domain that satisfies certain conditions (similar
to the RSY algorithm)

— uses a successive-approximation algorithm that is parsimonious in its use of
the decision procedure (similar to the KS algorithm)

— is bilateral; that is, it maintains both an under-approximation and a (non-
trivial) over-approximation of the desired answer, and hence is resilient to
timeouts: the procedure can return the over-approximation if it is stopped
at any point (unlike the RSY and KS algorithms).

The key concept used in generalizing the KS algorithm is an operation that we
call AbstractConsequence (Defn. 1, §3). We show that many abstract domains
have an AbstractConsequence operation that enables the kind of inexpensive
decision-procedure queries that we see in the KS algorithm (Thm. 2, §3).

Our experiments show that the bilateral algorithm for the AR domain im-
proves precision at up to 15% of a program’s control points (i.e., the beginning
of a basic block that ends with a branch), and on average is more precise for
3.1% of the control points (computed as the arithmetic mean).

4 Aditya Thakur, Matt Elder, and Thomas Reps

Algorithm 1: alT%SY@,A) (p) Algorithm 2: ag(s(@)
lower +— L 1 lower + L

2 141
while true do 3 while ¢ < rows(lower) do

1

2

3

4 4 p < Row(lower,—i) // p 3 lower
5 S < Model(p A —7(lower))

6

7

8

9

5 S < Model(pA—7(p))
if S is TimeOut then 6 if S is TimeOut then
return T 7 return T
else if S is None then 8 else if S is None then
break /! o=>7(lower) o9 Ik /! o=75(p)
10 else // S EA(lower) 10 else // S FE7(p)
11 lower < lower U 3(S) 11 lower < lower U 3(S)
12 ans < lower 12 ans < lower
13 return ans 13 return ans

Contributions. The contributions of the paper can be summarized as follows:
— We show how the KS algorithm can be modified into a bilateral algorithm
that maintains sound under- and over-approximations of the answer (§2).
— We present a framework for symbolic abstraction based on a bilateral algo-
rithm for computing @ (§3).
— We give several instantiations of the framework (§3 and §4).
— We compare the performance of various algorithms (§2 and §5).
§6 discusses related work. A longer version is available as a technical report [32].

2 Towards a Bilateral Algorithm

Alg. 1 shows the general RSY algorithm (&TRSY<£, A)) [25], which is parameter-
ized on logic £ and abstract domain A. Alg. 2 shows the KS algorithm (&&S) [15,
11], which is specific to the QFBV logic and the affine-relations (AR) domain.
The following notation is used in the algorithms:

— The operation of symbolic concretization (line 5 of Algs. 1 and 2), denoted
by 7, maps an abstract value a € A to a formula 7(a) € £ such that a and
7(a) represent the same set of concrete states (i.e., y(a) = [Y(a)]).

— Given a formula ¢ € £, Model(v) returns (i) a satisfying model S if a decision
procedure was able to determine that ¢ is satisfiable in a given time limit,
(ii) None if a decision procedure was able to determine that ¢ is unsatisfiable
in a given time limit, and (iii) TimeOut otherwise.

— The representation function B (line 11 of Algs. 1 and 2) maps a singleton
concrete state S € C to the least value in A that over-approximates {S}.

An abstract value in the AR domain is a conjunction of affine equalities, which
can be represented in a normal form as a matrix in which each row expresses
a non-redundant affine equality [11]. (Rows are O-indexed.) Given a matrix m,
rows(m) returns the number of rows of m (line 3 in Alg. 2), and Row(m, —i),
for 1 <4 < rows(m), returns row (rows(m) — i) of m (line 4 in Alg. 2).

Bilateral Algorithms for Symbolic Abstraction 5

0F T T T T T T
-- y=10z ,
.
— z=y
,
60l & : ; . i z/10=y . X
5 ,
Pe: 2 10p AR ™.
S 50t % 4 %
s ~ &x x , X
ﬁ 3 %%
S 5
2 40 5 15 N x
5 x g L
a <3
a o x By . g /x %
2 3k | £ .
g 30 Rix 5 ’
= Xy 8 g
H Xl X g Pt x
X < ’
S 20 R s .
£ X 2 fe-01¢
E < £
2 x
10
0 L L L L L L L It L L
0 10 20 30 40 50 60 70 <0.01 1e-01 1 10
Num. of SMT calls per invocation of kas Time taken per invocation of Gks (sec)
(a) (b)

Fig. 1. (a) Scatter plot showing of the number of decision-procedure queries during each
pair of invocations of aESY and a;s, when neither invocation had a decision-procedure
timeout. (b) Log-log scatter plot showing the times taken by each pair of invocations
of &;SY and a;s, when neither invocation had a decision-procedure timeout.

Both algorithms have a similar overall structure. Both are successive approxi-
mation algorithms: they compute a sequence of successively “larger” approxima-
tions to the set of states described by . Both maintain an under-approximation
of the final answer in the variable lower, which is initialized to L on line 1. Both
call a decision procedure (line 5), and having found a model S that satisfies the
query, the under-approximation is updated by performing a join (line 11).

The differences between Algs. 1 and 2 are highlighted in gray. The key dif-
ference is the nature of the decision-procedure query on line 5. &TRSY uses all
of lower to construct the query, while aﬁs uses only a single row from lower
(line 4)—i.e., just a single affine equality, which has two consequences. First,
@ES should issue a larger number of queries, compared with a;sy. Suppose that
the value of lower has converged to the final answer via a sequence of joins per-
formed by the algorithm. To discover that convergence has occurred, aygy has
to issue just a single decision-procedure query, whereas (’JZ;(S has to confirm it by
issuing rows(lower) — i number of queries, proceeding row-by-row. Second, each
individual query issued by aﬁs is simpler than the ones issued by aTRsy. Thus,
a priori, it is not clear which algorithm will perform better in practice.

We compared the time for (/JZTRSY (instantiated for QFBV and the AR domain)
and &%S to compute basic-block transformers for a set of x86 executables. There
was no overall timeout imposed on the invocation of the procedures, but each
invocation of the decision procedure (line 5 in Algs. 1 and 2) had a timeout of 3
seconds. (Details of the experimental setup are described in §5.) Fig. 1(a) shows a

6 Aditya Thakur, Matt Elder, and Thomas Reps

Algorithm 3: aI(S(ga) Algorithm 4: ais+(gp)

1
2 lower ¢~ L
3 i1
4 while ¢ < rows(lower) do while ¢ < rows(lower) do
5 p < Row(lower, —1) p < Row(lower, —i)

1 upper < T
2
3
4
5
// p 3 lower // p 3 lower, p A upper
6
7
8
9

lower < L
141

6 S < Model(p A —7(p)) S < Model(p A —7(p))

if S is TimeOut then
return upper

else if S is None then

7 if S is TimeOut then
8 return T
9 else if S is None then

/! ¢o=7(p) 10 upper < upperp /! o=75(p)
10 i1+ 1 14— 1+1
11 else // SHEAMP) 11 else /7 S E7(p)
12 lower < lower U B(S) 12 lower < lower Ul 5(S)
13 ans <+ lower 13 ans < lower
14 return ans 14 return ans

scatter-plot of the number of decision-procedure calls in each invocation of aTRSY
versus the corresponding invocation of a&s, when neither of the procedures had
a decision-procedure timeout. &TRSY issues fewer decision-procedure queries: on
average (computed as an arithmetic mean), a;s invokes 42% more calls to the
decision procedure. Fig. 1(b) shows a log-log scatter-plot of the total time taken
by each invocation of aTRSY versus the time taken by a&s. aﬁs is much faster
than agSY: overall, computed as the geometric mean of the speedups on each of
the x86 executables, a&s is about ten times faster than aTRsy.

The order-of-magnitude speedup can be attributed to the fact that each of the
&&S decision-procedure queries is less expensive than the ones issued by aTRsy.
At line 4 in &%S, p is a single constraint; consequently, the decision-procedure
query contains the single conjunct —y(p) (line 5). In contrast, at line 5 in aTRSY,
lower is a conjunction of constraints, and consequently the decision-procedure
query contains —y(lower), which is a disjunction of constraints.

Neither &TRSY nor a&s is resilient to timeouts. A decision-procedure query—
or the cumulative time for @'—might take too long, in which case the only safe
answer that can be returned is T (line 6 in Algs. 1 and 2). To remedy this
situation, we show how &&S can be modified to maintain a non-trivial over-
approximation of the desired answer. Alg. 4 is such a bilateral algorithm that
maintains both an under-approximation and over-approximation of a@(y). The
original @&S is shown in Alg. 3 for comparison; the differences in the algorithms
are highlighted in gray. (Note that line numbers are different in Algs. 2 and 3.)

The &iy algorithm (Alg. 4) initializes the over-approximation (upper) to T
on line 1. At any stage in the algorithm ¢ =7 (upper). On line 10, it is sound
to update upper by performing a meet with p because ¢ =-7(p). Progress is

Bilateral Algorithms for Symbolic Abstraction 7

CIv(ay) =2 7(@) Algorithm 5: &+ (£, A)(p)

=3 v(ar) 1 upper < T
2 lower < L
3 while lower # upper A ResourcesLeft do
// lower I upper
@ 4 p < AbstractConsequence (lower, upper)
// p 3 lower,p upper
5 S < Model(e A —7(p))

6 if S is TimeOut then

7 return upper
Fig. 2. Abstract Consequence: 8 else if S is None then /!l p=7(p)
For all a1,a2 € A 9 upper < upper 1 p
where y(a1) € v(a2), if a = 10 else // S ¥ 7(p)
AbstractConsequence (a1, az), 11 lower < lowerLl 3(S)
then vy(a1) C v(a) and 12 ans < upper
v(a) 2 v(az). 13 return ans

guaranteed because p 2 upper. In case of a decision-procedure timeout (line 7),
Alg. 4 returns upper as the answer (line 8). We use “~” to emphasize the fact

that &%(SJF(@) can return an over-approximation of a(y) in case of a timeout.

However, if the loop exits without a timeout, then &is + () returns a(p).

3 A Parametric Bilateral Algorithm

Like the original KS algorithm, &%{y applies only to the AR domain. The re-
T

sults presented in §2 provide motivation to generalize aj ., so that we can take
advantage of its benefits with domains other than AR. In this section, we present
the bilateral framework we developed. Proofs for all theorems are found in [32].

We first introduce the abstract-consequence operation, which is the key op-
eration in our generalized algorithm:

Definition 1. An operation AbstractConsequence(-,-) is an acceptable
abstract-consequence operation iff for all a1,a0 € A such that a1 T ao,
a = AbstractConsequence(as, az) implies a1 C a and a 2 as. O

Fig. 2 illustrates Defn. 1 graphically, using the concretizations of a1, as, and a.
Alg. 5 presents the parametric bilateral algorithm at (£, A)(y), which per-
forms symbolic abstraction of ¢ € L for abstract domain .A. The differences
between Alg. 5 and Alg. 4 are highlighted in gray.
The assumptions placed on the logic and the abstract domain are as follows:
1. There is a Galois connection C % A between A and concrete domain C.
2. Given a1, as € A, there are algorithms to evaluate a; U as and a; Mag, and
to check a1 = as.

8 Aditya Thakur, Matt Elder, and Thomas Reps

3y (upper)
=y
3 [el
== v (lower)

(b)

Fig. 3. The two cases arising in Alg. 5: ¢ A —=9(p) is either (a) unsatisfiable, or (b)
satisfiable with S = ¢ and S [~ 7(p). (Note that although lower C @(¢) C upper and
[¢] C v(upper) are invariants of Alg. 5, y(lower) C [¢] does not necessarily hold, as
depicted above.)

3. There is a symbolic-concretization operation 4 that maps an abstract value
a € A to a formula ¥(a) in L.
4. There is a decision procedure for the logic £ that is also capable of returning
a model satisfying a formula in L.
5. The logic L is closed under conjunction and negation.
6. There is an acceptable abstract-consequence operation for A (Defn. 1).
The abstract value p returned by AbstractConsequence (line 4 of Alg. 5) is
used to generate the decision-procedure query (line 5); Fig. 3 illustrates the two
cases arising based on whether o A—9(p) is satisfiable or unsatisfiable. The overall
resources, such as time, used by Alg. 5 can be controlled via the ResourceslLeft
flag (line 3).

Theorem 1. [Correctness of Alg. 5] Suppose that L and A satisfy require-
ments 1-6, and ¢ € L. Let a € A be the value returned by a*(L, A)(p). Then
1. a over-approzimates a(p); i.e., a(¢) C a.
2. If A has neither infinite ascending nor infinite descending chains and
at (L, A) (@) returns with no timeout, then a = a(p). O

Defn. 1 allows AbstractConsequence(a;,as) to return any a € A as long
as a satisfies a1 C a and a 2 ag. Thus, for a given abstract domain A there
could be multiple implementations of the AbstractConsequence operation. In
particular, AbstractConsequence(a;, as) can return aj, because a; C a; and
a1 A as. If this particular implementation of AbstractConsequence is used,
then Alg. 5 reduces to the RSY algorithm (Alg. 1). However, as illustrated in
82, the decision-procedure queries issued by the RSY algorithm can be very
expensive.

Conjunctive domains. We now define a class of conjunctive domains, for which
AbstractConsequence can be implemented by the method presented as Alg. 6.
The benefit of Alg. 6 is that it causes Alg. 5 to issue the kind of inexpensive
queries that we see in &\{(S. Let @ be a given set of formulas expressed in £. A
conjunctive domain over @ is an abstract domain A such that:

— For any a € A, there exists a finite subset ¥ C & such that ¥(a) = A ¥.

Bilateral Algorithms for Symbolic Abstraction 9

Algorithm 6: AbstractConsequence(a, az) for conjunctive domains

if a; = 1 then return L
Let ¥ C @ be the set of formulas such that (a1) = A¥
foreach ¢y € ¥ do

a < pol(y)

if a 2 a2 then return a

QU W N

— For any finite ¥ C @, there exists an a € A such that v(a) = [\ ?].
— There is an algorithm pa(ye) (“micro-a”) that, for each singleton formula
@ € &, returns a, € A such that a(p) = a,.
— There is an algorithm that, for all a1, as € A, checks a1 C as.
Many common domains are conjunctive domains. For example, using v, v; for
program variables and ¢, ¢; for constants:

Domain |®

Interval domain inequalities of the form ¢; < v and v < ¢2
Octagon domain [20] |inequalities of the form d+v; £v2 < ¢
Polyhedral domain [7]|linear inequalities over reals or rationals
KS domain [15, 11] linear equalities over integers mod 2%

Theorem 2. When A is a conjunctive domain over @, Alg. 6 is an acceptable
abstract-consequence operation. O

Discussion. We can weaken part 2 of Thm. 1 to allow A to have infinite descend-
ing chains by modifying Alg. 5 slightly. The modified algorithm has to ensure
that it does not get trapped updating upper along an infinite descending chain,
and that it exits when lower has converged to a(yp). We can accomplish these
goals by forcing the algorithm to perform the basic RSY iteration step at least
once every N iterations, for some fixed N. A version of Alg. 5 that implements
this strategy is presented in [32].

As presented, Alg. 5 exits and returns the value of wupper the first
time the decision procedure times out. We can improve the precision of
Alg. 5 by not exiting after the first timeout, and instead trying other
abstract consequences. The algorithm will exit and return wupper only if
it cannot find an abstract consequence for which the decision-procedure
terminates within the time bound. For conjunctive domains, Alg. 5 can
be modified to enumerate all conjuncts of lower that are abstract conse-
quences; to implement this strategy, lines 4-7 of Alg. 5 are replaced with

progress < false // Initialize progress
foreach p such that p = AbstractConsequence (lower, upper) do
S < Model(p A =7(p))
if S is not TimeOut then
progress < true // Can make progress
break

if —progress then return upper // Could not make progress

10 Aditya Thakur, Matt Elder, and Thomas Reps

Henceforth, when we refer to &, we mean Alg. 5 with the above two changes.

Relationship of AbstractConsequence to interpolation. To avoid the po-
tential for confusion, we now discuss how the notion of abstract consequence
differs from the well-known concept of interpolation [8]:

A logic L supports interpolation if for all p1, o € L such that v1 = o,
there exists a formula I such that (i) ¢1 =1, (ii) I = @2, and (iii) I uses
only symbols in the shared vocabulary of ¢ and .

Although condition (i) is part of Defn. 1, the restrictions imposed by conditions
(ii) and (iii) are not part of Defn. 1. From an operational standpoint, condition
(iii) in the definition of interpolation serves as a heuristic that generally allows
interpolants to be expressed as small formulas. In the context of &t, we are
interested in obtaining small formulas to use in the decision-procedure query
(line 5 of Alg. 5). Thus, given a1,a2 € A, it might appear plausible to use an
interpolant I of 5(a;) and 7(az) in &t instead of the abstract consequence of a;
and ay. However, there are a few problems with such an approach:

— There is no guarantee that I will indeed be simple; for instance, if the vocab-
ulary of 4(aq) is a subset of the vocabulary of 4(az), then I could be 7(aq)
itself, in which case Alg. 5 performs the more expensive RSY iteration step.

— Converting the formula I into an abstract value p € A for use in line 9 of
Alg. 5 itself requires performing @ on 1.

As discussed above, many domains are conjunctive domains, and for conjunctive
domains is it always possible to find a single conjunct that is an abstract conse-
quence (see Thm. 2). Moreover, such a conjunct is not necessarily an interpolant.

4 Instantiations

4.1 Herbrand-Equalities Domain

Herbrand equalities are used in analyses for partial redundancy elimination,
loop-invariant code motion [30], and strength reduction [31]. In these analyses,
arithmetic operations (e.g., + and *) are treated as term constructors. Two
program variables are known to hold equal values if the analyzer determines
that the variables hold equal terms. Herbrand equalities can also be used to
analyze programs whose types are user-defined algebraic data-types.

Basic definitions. Let F be a set of function symbols. The function arity : F —
N yields the number of parameters of each function symbol. Terms over F are
defined in the usual way; each function symbol f always requires arity(f) param-
eters. Let T (F, X) denote the set of finite terms generated by F and variable
set X. The Herbrand universe of F is T (F, (), the set of ground terms over F.

A Herbrand state is a mapping from program variables V to ground terms

(i.e., a function in V — T (F,0)). The concrete domain consists of all sets of
def

Herbrand states: C = P (V — T (F,0)). We can apply a Herbrand state o to a
term t € T (F,V) as follows:

Bilateral Algorithms for Symbolic Abstraction 11

olt] o(t) iftey
Floftil- o olte]) it = f(tr, . t)

The Herbrand-equalities domain. Sets of Herbrand states can be ab-
stracted in several ways. One way is to use conjunctions of equations among
terms (whence the name “Herbrand-equalities domain”). Such systems of equa-
tions can be represented using Equivalence DAGs [30]. A different, but equiv-
alent, approach is to use a representation based on idempotent substitutions:
A=V = T(F,V)).. Idempotence means that for each ¢ # | and v € V,
olo(v)] = o(v). The meaning of an idempotent substitution o € A is given by
its concretization, v: A — C, where y(L) =), and otherwise

V(o) ={p: V= T (F,0)|Vv e V: p(v) = plo(v)]}. (2)

We now show that the Herbrand-equalities domain satisfies the requirements
of the bilateral framework. We will assume that the logical language £ has all
the function symbols and constant symbols from F, equality, and a constant
symbol for each element from V. (In a minor abuse of notation, the set of such
constant symbols will also be denoted by V.) The logic’s universe is the Herbrand
universe of F (i.e., 7 (F,0)). An interpretation maps the constants in V to terms
in 7 (F,0). To be able to express J(p) and —7(p) (see item 5 below), we assume
that £ contains at least the following productions:

Fu=FANF|-F|v=TforveV| false (3)
To=veV| f(Ti,...,Ty) when arity(f) =k

1. There is a Galois connection C % A:

— The ordering on C is the subset relation on sets of Herbrand states.
— 7(o) is given in Eqn. (2).

~ a(8) = M{a|(a) 2 5}.

— Fora,be A, a Cbiff y(a) C ~(b).

2. Meet is most-general unification of substitutions, computed by standard uni-
fication techniques [18, Thm. 3.1].

3. Join is most-specific generalization, computed by “dual unification” or “anti-
unification” [23,26], [18, Thm. 5.8].

4. Equality checking is described by Lassez et al. [18, Prop. 4.10].

5. 4: y(L) = false; otherwise, y(c) is Aoy v = o(v).

6. One can obtain a decision procedure for £ formulas using the built-in
datatype mechanism of, e.g., Z3 [9] or Yices [10], and obtain the necessary
decision procedure using an existing SMT solver.

7. L is closed under conjunction and negation.

8. AbstractConsequence: The domain is a conjunctive domain, as can be seen
from the definition of 7.

Thm. 1 ensures that Alg. 5 returns a(p) when abstract domain A has nei-
ther infinite ascending nor infinite descending chains. The Herbrand-equalities
domain has no infinite ascending chains [18, Lem. 3.15]. The domain described
here also has no infinite descending chains, essentially because every right-hand

12 Aditya Thakur, Matt Elder, and Thomas Reps

term in every Herbrand state has no variables but those in V. (Worked examples
of @* (Alg. 5) for the Herbrand-equalities domain are given in [32].)

4.2 Polyhedral Domain

An element of the polyhedral domain [7] is a convex polyhedron, bounded by hy-
perplanes. It may be unbounded in some directions. The symbolic concretization
of a polyhedron is a conjunction of linear inequalities. The polyhedral domain is
a conjunctive domain:

— Each polyhedron can be expressed as some conjunction of linear inequalities

(“half-spaces”) from the set F = {Zvev CyU > c‘ ¢, ¢,y are constants}.

— Every finite conjunction of facts from F can be represented as a polyhedron.
— pa: Each formula in F corresponds to a simple, one-constraint polyhedron.
— There is an algorithm for comparing two polyhedra [7].

In addition, there are algorithms for join, meet, and checking equality.

The logic QF_LRA (quantifier-free linear
real arithmetic) supported by SMT solvers
provides a decision procedure for the frag-
ment of logic that is required to express nega-
tion, conjunction, and 4 of a polyhedron.
Consequently, the polyhedral domain satis-
fies the bilateral framework, and therefore
supports the at algorithm. The polyhedral
domain has both infinite ascending chains
and infinite descending chains, and hence
Alg. 5 is only guaranteed to compute an over-
approximation of a(yp).

Because the polyhedral domain is a con-
junctive domain, if a1 & as, then some single
constraint a of aj satisfies a A as. For in-
stance, for the polyhedra a; and as in Fig. 4,
the region a above the dotted line is an ac-
ceptable abstract consequence.

.al a2

Fig. 4. Abs. conseq. for polyhedra.
a = AbstractConsequence (a1, a2)

5 Experiments

In this section, we compare two algorithms for performing symbolic abstraction
for the affine-relations (AR) domain [15,11]:

— the afg procedure of Alg. 2 [11].

— the at(AR) procedure that is the instantiation of Alg. 5 for the affine-

relations (AR) domain and QFBV logic.

Although the bilateral algorithm &t (AR) benefits from being resilient to time-
outs, it maintains both an over-approximation and an under-approximation.
Thus, the experiments were designed to understand the trade-off between per-
formance and precision. In particular, the experiments were designed to answer
the following questions:

Bilateral Algorithms for Symbolic Abstraction 13

Performance (x86) || Better

Prog. Measures of size arg a*(AR)]| a*(AR)
name ||instrs|procs|BBs|brs|WPDS|t/o|| WPDS ||precision
finger 532 18| 298| 48|| 104.0| 4 138.9I 6.3%

subst 1093 16| 609| 74|| 196.7| 4 214.6 0%
label 1167 16| 573|103|| 146.1| 2 171.6 0%
chkdsk || 1468 18| 787|119|| 377.2| 16 417.9 0%
convert|| 1927| 38(1013|161|| 287.1| 10|| 310.5 0%

route 1982| 40| 931|243| 618.4| 14|| 589.9 2.5%
logoff || 2470| 46(1145|306|| 611.2| 16|| 644.6|| 15.0%
setup 4751 67|1862|589| 1499| 60 1576 1.0%

Fig. 5. WPDS experiments. The columns show the number of instructions (instrs); the
number of procedures (procs); the number of basic blocks (BBs); the number of branch
instructions (brs); the times, in seconds, for g and &*(AR) WPDS construction;
the number of invocations of ajg that had a decision procedure timeout (t/o); and
the degree of improvement gained by using &'(AR)-generated ARA weights rather
than &I(S weights (measured as the percentage of control points whose inferred one-
vocabulary affine relation was strictly more precise under &$<AR>—based analysis).

1. How does the speed of &*(AR) compare with that of a&s?
2. How does the precision of &*(AR) compare with that of &\E{S?

To address these questions, we performed affine-relations analysis (ARA)
on x86 machine code, computing affine relations over the x86 registers. Our
experiments were run on a single core of a quad-core 3.0 GHz Xeon computer
running 64-bit Windows XP (SP2), configured so that a user process has 4GB of
memory. We analyzed a corpus of Windows utilities using the WALi [14] system
for weighted pushdown systems (WPDSs). For the aﬁs—based (a(AR)-based)
analysis we used a weight domain of a'-generated (at(AR)-generated) ARA
transformers. The weight on each WPDS rule encodes the ARA transformer for
a basic block B of the program, including a jump or branch to a successor block.
A formula @p is created that captures the concrete semantics of B, and then the
ARA weight for B is obtained by performing a(¢p). We used EWPDS merge
functions [17] to preserve caller-save and callee-save registers across call sites.
The post™ query used the FWPDS algorithm [16].

Fig. 5 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches).? Prior research [11] shows that the calls
to @ during WPDS construction dominate the total time for ARA. Although the
overall time taken by @ is not limited by a timeout, we use a 3-second timeout
for each invocation of the decision procedure (as in Elder et al. [11]). Column
7 of Fig. 5 lists the number invocations of a&s that had a decision-procedure
timeout, and hence returned T. (Note that, in general, a&s implements an over-
approximating & operation.)

3 Due to the high cost of the ARA-based WPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.

14 Aditya Thakur, Matt Elder, and Thomas Reps

Columns 6 and 8 of Fig. 5 list the time taken, in seconds, for a&s and a*(AR)
WPDS construction. We observe that on average a*(AR) is about 10% slower
than a&s (computed as the geometric mean), which answers question 1.

To answer question 2 we compared the precision of the WPDS analysis when
using aﬂs with the precision obtained using &*(AR). In particular, we compare
the affine-relation invariants computed by the a&s—based and at(AR)-based
analyses for each control point—i.e., the beginning of a basic block that ends
with a branch. The last column of Fig. 5 shows the percentage of control points
for which the a*(AR)-based analysis computed a strictly more precise affine re-
lation. We see that the ai<AR)—based analysis improves precision at up to 15%
of control points, and, on average, the &t (AR)-based analysis is more precise for
3.1% of the control points (computed as the arithmetic mean), which answers
question 2.

6 Related Work

6.1 Related Work on Symbolic Abstraction

Previous work on symbolic abstraction falls into three categories:

1. algorithms for specific domains [24,3,2,15,11]

2. algorithms for parameterized abstract domains [12, 35,28, 22]

3. abstract-domain frameworks [25, 34].
What distinguishes category 3 from category 2 is that each of the results cited
in category 2 applies to a specific family of abstract domains, defined by a
parameterized Galois connection (e.g., with an abstraction function equipped
with a readily identifiable parameter for controlling the abstraction). In contrast,
the results in category 3 are defined by an interface; for any abstract domain
that satisfies the requirements of the interface, one has a method for symbolic
abstraction. The approach presented in this paper falls into category 3.

Algorithms for specific domains. Regehr and Reid [24] present a method
that constructs abstract transformers for machine instructions, for interval and
bitwise abstract domains. Their method does not call a SAT solver, but instead
uses the physical processor (or a simulator of a processor) as a black box.
Brauer and King [3] developed a method that works from below to derive
abstract transformers for the interval domain. Their method is based on an
approach due to Monniaux [22] (see below), but they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-
blasting”), which allows a formula equivalent to Vz.¢ to be obtained from ¢
(in CNF) by removing the z and —z literals from all of the clauses of .

2. Whereas Monniaux’s method performs abstraction and then quantifier elim-
ination, Brauer and King’s method performs quantifier elimination on the
concrete specification, and then performs abstraction.

Barrett and King [2] describe a method for generating range and set ab-
stractions for bit-vectors that are constrained by Boolean formulas. For range
analysis, the algorithm separately computes the minimum and maximum value

Bilateral Algorithms for Symbolic Abstraction 15

of the range for an n-bit bit-vector using 2n calls to a SAT solver, with each
SAT query determining a single bit of the output. The result is the best over-
approximation of the value that an integer variable can take on (i.e., @).

Algorithms for parameterized abstract domains. Graf and Saidi [12]
showed that decision procedures can be used to generate best abstract trans-
formers for predicate-abstraction domains. Other work has investigated more
efficient methods to generate approximate transformers that are not best trans-
formers, but approach the precision of best transformers [1, 4].

Yorsh et al. [35] developed a method that works from above to perform
a(p) for the kind of abstract domains used in shape analysis (i.e., “canonical
abstraction” of logical structures [27]).

Template Constraint Matrices (TCMs) are a parametrized family of linear-
inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [28] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [22] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.

Abstract-domain frameworks. Thakur and Reps [34] recently discovered a
new framework for performing symbolic abstraction from “above”: a*. The a*
framework builds upon the insight that Stalmarck’s algorithm for propositional
validity checking [29] can be explained using abstract-interpretation terminol-
ogy [33]. The a* framework adapts the same algorithmic components of this
generalization to perform symbolic abstraction. Because a* maintains an over-
approximation of @, it is resilient to timeouts.

The &t framework is based on much different principles from the RSY and
bilateral frameworks. The latter frameworks use an inductive-learning approach
to learn from examples, while the ot framework uses a deductive approach by
using inference rules to deduce the answer. Thus, they represent two different
classes of frameworks, with different requirements for the abstract domain.

6.2 Other Related Work

Cover algorithms. Gulwani and Musuvathi [13] defined what they termed
the “cover problem”, which addresses approzimate existential quantifier elimi-
nation: Given a formula ¢ in logic £, and a set of variables V', find the strongest
quantifier-free formula % in £ such that [V : ¢] C [@]. They presented cover
algorithms for the theories of uninterpreted functions and linear arithmetic, and
showed that covers exist in some theories that do not support quantifier elimi-
nation.

The notion of a cover has similarities to the notion of symbolic abstraction,
but the two notions are distinct. Our technical report [32] discusses the differ-
ences in detail, describing symbolic abstraction as over-approximating a formula

16 Aditya Thakur, Matt Elder, and Thomas Reps

© using an impoverished logic fragment (e.g., approximating an arbitrary QFBV
formula, such as Eqn. (1), using conjunctions of modular-arithmetic affine equal-
ities) while a cover algorithm only removes variables V' from the vocabulary of
. The two approaches yield different over-approximations of ¢, and the over-
approximation obtained by a cover algorithm does not, in general, yield suitable
abstract values and abstract transformers.

Logical abstract domains. Cousot et al. [6] define a method of abstract inter-
pretation based on using particular sets of logical formulas as abstract-domain
elements (so-called logical abstract domains). They face the problems of (i) per-
forming abstraction from unrestricted formulas to the elements of a logical ab-
stract domain [6, §7.1], and (ii) creating abstract transformers that transform
input elements of a logical abstract domain to output elements of the domain
[6, §7.2]. Their problems are particular cases of @(yp). They present heuristic
methods for creating over-approximations of a(y).

Connections to machine-learning algorithms. In [25], a connection was
made between symbolic abstraction (in abstract interpretation) and the problem
of concept learning (in machine learning). In machine-learning terms, an abstract
domain A is a hypothesis space; each domain element corresponds to a concept.
Given a formula ¢, the symbolic-abstraction problem is to find the most specific
concept that explains the meaning of ¢.

a;SY (Alg. 1) is related to the Find-S algorithm [21, §2.4] for concept learn-
ing. Both algorithms start with the most-specific hypothesis (i.e., L) and work
bottom-up to find the most-specific hypothesis that is consistent with positive
examples of the concept. Both algorithms generalize their current hypothesis
each time they process a (positive) training example that is not explained by
the current hypothesis. A major difference is that Find-S receives a sequence of
positive and negative examples of the concept (e.g., from nature). It discards
negative examples, and its generalization steps are based solely on the positive
examples. In contrast, &TRSY repeatedly calls a decision procedure to generate
the next positive example; a;SY never sees a negative example.

A similar connection exists between at (Alg. 5) and a different concept-
learning algorithm, called the Candidate-Elimination algorithm [21, §2.5]. Both
algorithms maintain two approximations of the concept, one that is an over-
approximation and one that is an under-approximation.

References

1. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstraction for
model checking C programs. In TACAS, pages 268-283, 2001.

2. E. Barrett and A. King. Range and set abstraction using SAT. ENTCS, 267(1),
2010.

3. J. Brauer and A. King. Automatic abstraction for intervals using Boolean formulae.
In SAS, 2010.

4. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI-C programs using SAT. FMSD, 25(2-3), 2004.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Bilateral Algorithms for Symbolic Abstraction 17

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269282, 1979.

P. Cousot, R. Cousot, and L. Mauborgne. Logical abstract domains and interpre-
tations. In The Future of Software Engineering, 2011.

P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In POPL, 1978.

W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Sym. Logic, 22(3), Sept. 1957.

. L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS, 2008.
10.
11.

B. Dutertre and L. de Moura. Yices: An SMT solver, 2006. yices.csl.sri.com/.

M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract domains of
affine relations. In SAS, 2011.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
1997.

S. Gulwani and M. Musuvathi. Cover algorithms and their combination. In ESOP,
2008.

N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

A. King and H. Sgndergaard. Automatic abstraction for congruences. In VMCAI,
2010.

A. Lal and T. Reps. Improving pushdown system model checking. In CAV, 2006.
A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In
CAV, 2005.

J. Lassez, M. Maher, and K. Marriott. Unification revisited. In Foundations of
Logic and Functional Programming, volume 306, pages 67—113. Springer, 1988.

J. Lim and T. Reps. A system for generating static analyzers for machine instruc-
tions. In CC; 2008.

A. Miné. The octagon abstract domain. In WCRE, pages 310-322, 2001.

T. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, MA, 1997.

D. Monniaux. Automatic modular abstractions for template numerical constraints.
Logical Methods in Comp. Sci., 6(3), 2010.

G. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,
pages 153-165. Edinburgh Univ. Press, 1970.

J. Regehr and A. Reid. HOIST: A system for automatically deriving static ana-
lyzers for embedded systems. In ASPLOS, 2004.

T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.
In VMCAI pages 252-266, 2004.

J. Reynolds. Transformational systems and the algebraic structure of atomic for-
mulas. Machine Intelligence, 5(1):135-151, 1970.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
TOPLAS, 24(3):217-298, 2002.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In VMCAI, 2005.

M. Sheeran and G. Stalmarck. A tutorial on Stalmarck’s proof procedure for
propositional logic. FMSD, 16(1):23-58, 2000.

B. Steffen, J. Knoop, and O. Riithing. The value flow graph: A program represen-
tation for optimal program transformations. In ESOP, 1990.

B. Steffen, J. Knoop, and O. Riithing. Efficient code motion and an adaption to
strength reduction. In TAPSOFT, 1991.

18 Aditya Thakur, Matt Elder, and Thomas Reps

32. A. Thakur, M. Elder, and T. Reps. Bilateral algorithms for symbolic ab-
straction. TR 1713, CS Dept., Univ. of Wisconsin, Madison, WI, Mar. 2012.
www.cs.wisc.edu/wpis/papers/tr1713.pdf.

33. A. Thakur and T. Reps. A Generalization of Stalmarck’s Method. In SAS, 2012.

34. A. Thakur and T. Reps. A method for symbolic computation of precise abstract
operations. In CAV, 2012.

35. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract
operations for shape analysis. In TACAS, 2004.

